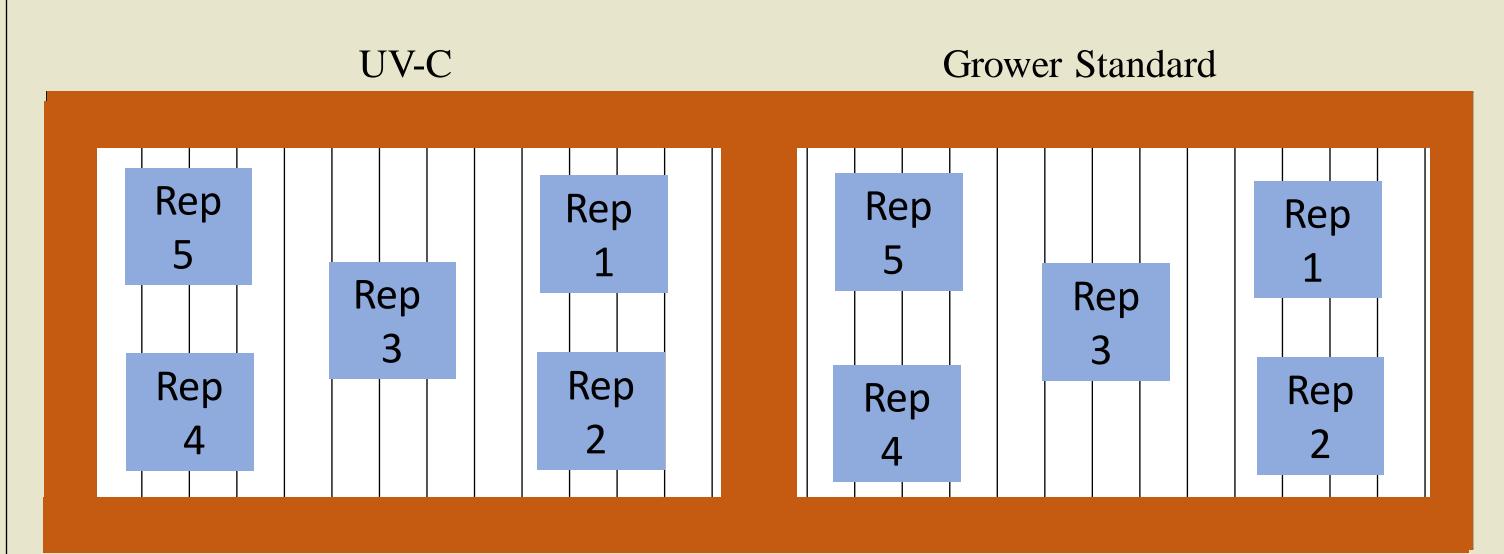


FARM-SCALE EVALUATION OF UV-C FOR CONTROL OF POWDERY MILDEW IN STRAWBERRIES


S.Z. Simard, K.A. Blauer, B.R. Serpa, and G.J. Holmes California Polytechnic State University, San Luis Obispo, CA ssimard@calpoly.edu

Introduction

This study compared the efficacy of UV-C and a conventional fungicide program against strawberry powdery mildew within a commercial strawberry production field. As the limitations of fungicides continue to increase, alternative methods such as UV-C are being explored as an alternative approach¹.

Materials and Methods

A powdery mildew-susceptible cultivar 'Portola' was planted on 30 May 2022 in Nipomo, CA. Strawberry beds were divided into two treatments: grower standard and UV-C. Ten plants were rated weekly for incidence (total infected leaves per plot/total leaves per plot) and severity (infected % of total leaf surface) in 5 pseudo-replications. UV- treatment was applied twice-weekly between 9:00 PM and 1:00 AM using an autonomous robot.

Figure 1. Experiment layout: Five areas (pseudo-reps 1-5) were identified in each of the two plots, no plants were sampled from a 25-ft buffer around the field edge (shown in orange).

Table 1. Grower fungicide program. Fungicide applications are listed in chronological order.

Date	Product									
	Microthiol Disperss Wettable Sulfur 80WP									
13-Jun	Rhyme 2.08SC									
22-Jun	Microthiol Disperss Wettable Sulfur 80WP									
5-Jul	Quintec 2.08SC									
	Prev-am 0.084SC									
16-Jul	Fontelis 1.67SC									
	Procure 480SC									
	Captan 80WDG									
30-Jul	Microthiol Disperss Wettable Sulfur 80WP									
	Luna Sensation 4.2SC									
6-Aug	Microthiol Disperss Wettable Sulfur 80WP									
13-Aug	Dusting Sulfur 98WP									
	Rhyme 2.08SC									
	Microthiol Disperss Wettable Sulfur 80WP									
19-Aug	Switch 62.5WG									
	Pristine 0.0238SC									
26-Aug	Microthiol Disperss Wettable Sulfur 80WP									
10-Sep	Switch 62.5WG									

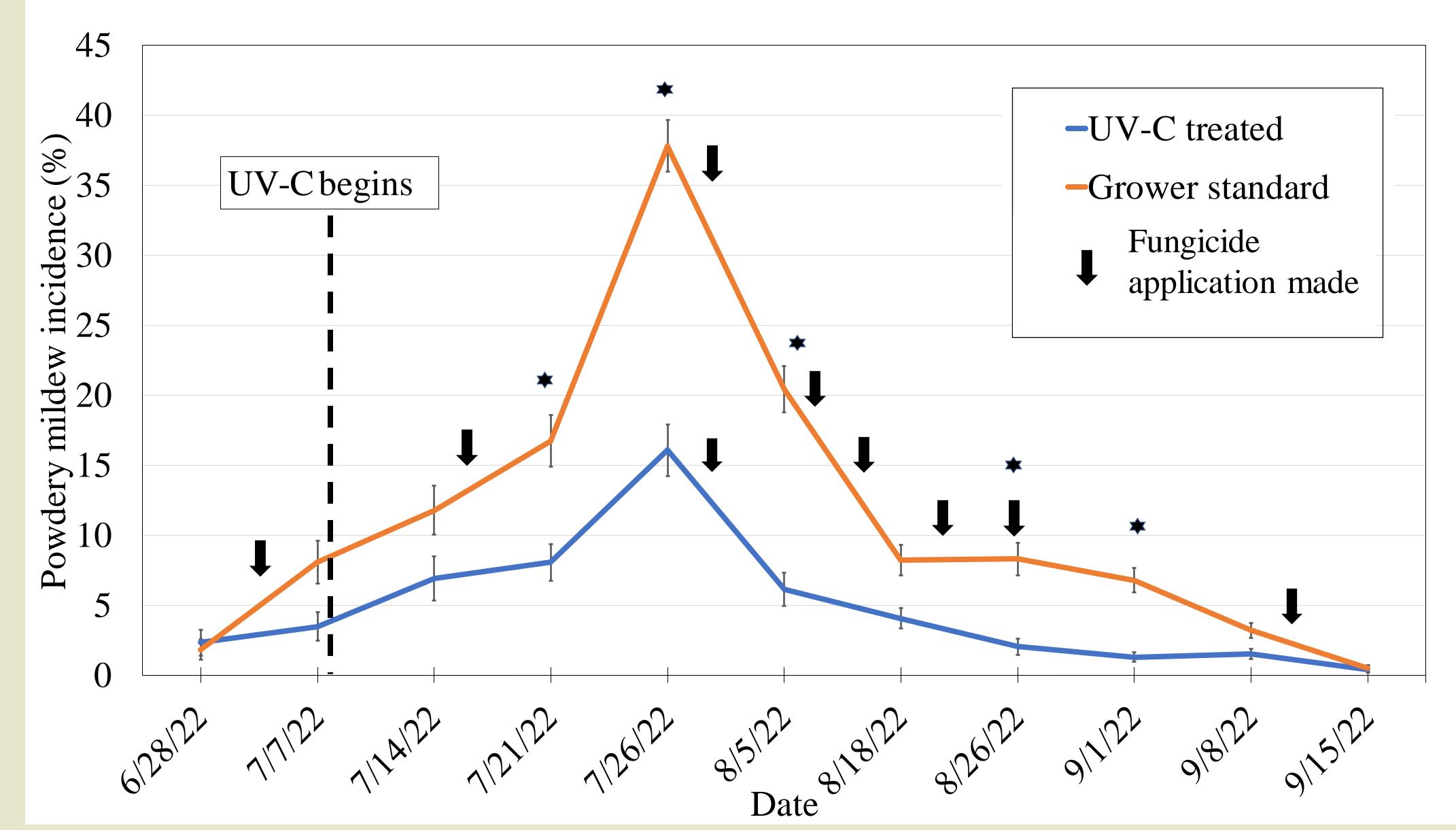


Figure 2. **A**. Saga Robotics autonomous robot treating at night with UV-C light. **B**. Example of 5% severity rating of powdery mildew infection in trial.

Results and Discussion

UV-C treated plants had significantly less powdery mildew incidence at five of the nine evaluation dates. Disease incidence peaked 26 Jul, reaching 16.1% and 37.8% for the UV-C treatment and grower standard treatment.

Figure 3. Powdery mildew incidence over time.* indicates treatments were significantly different on that evaluation date per t-test.

Table 2. Powdery mildew incidence over time and area under the disease progress curves (AUDPC) with statistical analysis

Powdery mildew incidence (%)													
	28-	7-	14-	21-	26-	5-	18-	26-	1-	8-	15-		
Treatment	Junzy	July	Jul	Jul	Jul	Aug	Aug	Aug	Sep	Sep	Sep	AUDPC	
UV-C Treated	2.3 a	3.5 a	6.9 a	8.1 a	16.1 a	6.1 a	4.1 a	2.0 a	1.3 a	1.5 a	0.4 a	383.5 a	
Grower fungicide	1 0 -	0.1.	110.	1 C 7 L	27 O L	20.41	0.0	0.21	C O 1	2.0.	0 <i>5</i> a	07471	
program	1.8 a	8.1 a	11.8 a	16./ b	37.8 b	20.4 b	8.2 a	8.3 b	0.80	5.2 a	0.5 a	974.7 b	

^Z Numbers within a column followed by the same letter are not significantly different (P=0.05) per *t*-test calculated using JMP version 16.

Conclusion

This study demonstrates that UV-C treatment, applied twice-weekly, significantly reduces powdery mildew incidence compared to the growers' fungicide program. Additional studies are recommended to draw stronger conclusions by including a non-treated area. This study confirms results from similar studies (Mello et al.)

Acknowledgements and References

Thank you to Red Dog Management Inc. and Saga Robotics for their help and participation in this project

- 1. Janisiewicz, W. J., Takeda, F., Glenn, D. M., Camp, M.J., and Jurick, W.M. 2016. Dark period following UV-C treatment enhances killing of
- Botrytis cineria conidia and controls grey mold of strawberries. Phytopathology 106:320-329.
 Mello, P. P., Onofre, R. B., Rea, M., Bierman, A., Gadoury, D. M., Ivors, K., Ganci, M., Broome, J. C. and Peres, N. A. 2022. Design, construction, and evaluation of equipment for nighttime application of UV-C for management of strawberry powdery mildew in Florida and California. https://doi.org/10.1094/PHP-01-22-0002-RS

y Evaluations done prior to UV-C treatment.