CAL POLY SCHOOL OF EDUCATION (SOE)
Course Syllabus Winter 2018
Course Number & Title: EDUC 436-01/02: Learning to Teach K-8 Science with Diverse Populations
Instructor: Cherice Kelso
Class Location & Time: Building 2, Room 126, Mondays 8:10-12:00

<table>
<thead>
<tr>
<th>COURSE LEARNING OUTCOMES Candidates will know, understand, and be able to:</th>
<th>Assessment</th>
<th>MSTEP Learning Outcomes</th>
<th>University Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Candidates analyze key theoretical and evidence-based foundations of scientific processes and instruction for grades K-8.</td>
<td>Readings, discussions, written assignments, and final</td>
<td>1, 3, and 4</td>
<td>1, 2, 3, 5 and 6</td>
</tr>
<tr>
<td>2. Candidates identify and utilize effective instructional approaches and materials for an integrated, comprehensive, balanced curriculum to support all learners in science in grades K-8.</td>
<td>Readings, discussions, written assignments, lesson plans, and final</td>
<td>1, 3, and 4</td>
<td>1, 2, 3, 5 and 6</td>
</tr>
<tr>
<td>3. Candidates demonstrate accurate use of a variety of assessment tools and practices to effectively plan and evaluate science practices in grades K-8.</td>
<td>Readings, discussions, written assignments, and Science Learning Segment</td>
<td>5</td>
<td>1-6</td>
</tr>
<tr>
<td>4. Candidates demonstrate engaging their students (grades K-8) in scientific practices that promote awareness and development of inquiry.</td>
<td>Readings, discussions, lesson plans, and final</td>
<td>1, 3, and 4</td>
<td>1 – 6</td>
</tr>
<tr>
<td>5. Candidates create an environment that shows evidence of the integration of foundational knowledge, instructional practices, approaches and methods, and appropriate choice of curriculum materials and appropriate use of assessments in grades K-8.</td>
<td>Readings, discussions, written assignments, lesson plans, and final</td>
<td>1, 3, and 4</td>
<td>1-6</td>
</tr>
<tr>
<td>6. Candidates demonstrate practices toward professional learning and leadership as a career-long effort and responsibility.</td>
<td>Readings, discussions, written assignments</td>
<td>6</td>
<td>1-6</td>
</tr>
</tbody>
</table>

University Learning Outcomes Graduates are able to…
1. Think critically and creatively
2. Communicate effectively
3. Work productively as individual and in groups
4. Use knowledge/skills to make positive contribution to society
5. Make reasoned decisions based on understanding of ethics, respect for diversity, and awareness of sustainability issues
6. Engage in lifelong learning

Contact Information: cekelso@calpoly.edu
Office and Office Hours: Building 2, Room 109
Mondays 12:00-1:00 pm and by appointment
<table>
<thead>
<tr>
<th>DAY/DATE</th>
<th>TOPICS & ASSIGNMENTS</th>
<th>ASSESSMENTS</th>
<th>TPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1
Jan 8</td>
<td>Thinking like a Scientist and Engaging in Scientific Practices
Candidates will learn to use phenomena to engage children in thinking/acting like a scientist or engineer and ground their ideas in evidence (data). Candidates will then practice leading with phenomena in order to provide an experience base from which children can question and consider the concepts of science. Candidates will identify alternative conceptions of the physical world students may have due to the nature of our everyday sense making that differs from that of the production of knowledge in science. Candidates will also discuss and identify developmental issues when working with multiple variables.
Candidates will engage in ways to design activities (cognitive and physical) in the practices of science or thinking like a scientist. We will begin a plant investigation using the scientific practices and conduct it as controlled experiment involving independent and dependent variables.
To address state expectations, candidates will focus on an approach to inquiry-based instruction called Guided Inquiry, that presents a particular role for the teacher being the model of scientific/engineering thinking and action. Candidates will learn to approach information as well as conduct investigations/experiments via questioning techniques in order for their students to experience powerful learning opportunities.
Assignment: Story Behind the Science (DUE Jan. 15) Upload to Poly Learn</td>
<td>• Participation in whole-group, small group, and/or individual activities related to the topics and readings (Science in the Standard)
• Check for understanding of practices/themes</td>
<td>1-6</td>
</tr>
</tbody>
</table>

| **Week 2**
Jan 17
WED (8am-10)
No Class Jan 15 | **The New Generation Science Standard (NGSS)**
Candidates are exposed to NGSS Performance Standards including the three dimensions, framework, and aligned curriculum through review of the website and tangible resources and materials. Candidates recognize curriculum materials that promote and support children’s engagement with the practices of science and engineering or thinking like a scientist/engineer. Students will engage in a story-based building activity in which they move through the steps of the Engineering Design Process. Candidates familiarize themselves with this five step process (ask, imagine, plan, create, improve) so they can guide students to solve engineering challenges.
Prior Knowledge:
As part of a team, candidates will select a grade level science standard on which to assess their students’ knowledge and prior experience, before the fieldwork instruction. The information will allow candidates to better design instruction to help students build a depth of understanding about their targeted concepts. Concept mapping will be presented as a tool for assessing prior knowledge. | • Check for understanding of major themes/topics
• Participation in whole-group, small group, and/or individual activities related to the topics *(NGSS-Science in the Standard)* | 1-6 |

Comment [VM1]: 1.3 I/P *(Introduced in readings and instructor-led lessons. Practiced in whole-group, small-group, and/or individual activities and discussions with checks for understanding).*

Comment [VM2]: 3.1 I/P *(Introduced in readings and instructor-led lessons. Practiced in whole-group, small-group, and/or individual activities and discussions with checks for understanding).*

Comment [VM3]: 1.1, 5.5 I/P *(Introduced in readings and instructor-led lessons. Practiced in whole-group, small-group, and/or individual activities and discussions with checks for understanding).*
Week 3
Jan 22

<table>
<thead>
<tr>
<th>Candidates will collectively design an assessment, but will individually administer the assessment to a small groups of students at their placement. They will then each create a summary report of the prior knowledge of the group with information about the performance of each individual. Candidates will use this information to better design instruction and help students build a depth of understanding about the targeted concepts within the chosen standard.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment: NGSS Science in the Standard (DUE Jan 22) Upload to Poly Learn</td>
</tr>
<tr>
<td>Assignment: Inquiry Based Presentation DRAFT #1 (Due Jan 22)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interactive Science Notebooks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates observe designs of various interactive science notebooks and discuss the many purposes it holds for students and teachers such as communicating the understanding of concepts, recording information in engaging ways, learning ways to organize their work, a source of assessment and guidance, and as a record of each student’s growth.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates will gain knowledge, respect, and application for science education materials and be able to teach their students to possess these attributes as well. Importance of describing and labeling characteristics of materials prior to being tested as well as what they represent will be discussed. Candidates will also learn the importance of taking note to the number of materials, where these materials are being accessed, and how they are being used by the student. Teachers develop roles for the students during the experience and includes the handling and respect for the materials. Candidates will learn to teach their student how to note cause and effect on materials from testing. They will also note conclusions/claims that can be made based on patterns seen in the data.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assignment: Student Assessment for PKA (DUE Jan 29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bring a hard copy in to class for Peer Review</td>
</tr>
<tr>
<td>Will submit this document on Feb 12 with Final Write-up</td>
</tr>
</tbody>
</table>

- Check for understanding of major themes/topics
- Participation in whole-group, small group, and/or individual activities related to the topics and readings

Comment [VM4]: 1.3, 1.5 I/P (Introduced in readings and instructor-led lessons. Practiced in whole-group, small-group, and/or individual activities and discussions with checks for understanding).

Comment [VM5]: 3.6, 4.6 I/P (Introduced in readings and instructor-led lessons. Practiced in whole-group, small-group, and/or individual activities and discussions with checks for understanding).
Week 4 Jan 29

Co-Planning a Learning Segment
Candidates will learn the purpose and method of interactive phenomena by observing and analyzing video of teachers using phenomena to engage students in inquiry in their lessons. Candidates will also learn the purpose and method of writing mini-lessons by observing and analyzing a learning segment on magnetism and practicing the instruction with their peers. As part of a team, candidates will create plans for instruction at their placement to a small or whole group of children across three sessions. Candidates will design instruction that is strongly influenced and driven from the results of their prior knowledge assessment. Candidates will design inquiry-based instruction and involve students in the practices of science. They will write lesson plans and include handouts that will be used with the students.

Assignment: Draft for Learning Segment (DUE Feb 5)
Bring a hard copy in to class
Assignment: Inquiry Based Presentation DRAFT #2 (DUE Feb 5)

Week 5 Feb 5

Observations, Data Collection, and Analysis
Candidates will value and emphasize the importance of accuracy, precision, and estimation when conducting an investigation/experiment. Candidates will be also evaluated through a science teaching activity at their placement at this time. Qualitative versus quantitative data, conversion to numerical values so graphs, charts, etc. can be generated will also be explored.

Assignment: Draft for Lesson Plan #1 (DUE Feb 12)
Assignment: Science PKA Write-up (DUE Feb 12) Upload to Poly Learn

Week 6 Feb 12

Making Claims and Engaging in Argumentation
Candidates will provide explanations, demonstrations, and visual representations to serve to illustrate science concepts and principles learned through scientific investigations and experimentation. They will understand the significance of analyzing patterns, how to write a claim, and engage in argumentation.

Co-Planning Continued
Candidates will continue to co-plan and “fine tune” their series of three lesson plans.

Assignment: Draft for Lesson Plan #2 (DUE Feb 19)
Assignment: Inquiry Based Presentation FINAL DRAFT (DUE Feb 19)

Assignment [VM6]: 1.3, 1.5, 3.2, 3.3, 3.4, 4.4 I/P (Introduced in readings and instructor-led lessons. Practiced in whole-group, small-group, and/or individual activities and discussions with checks for understanding).

Assignment [VM7]: 3.1, 4.4 I/P (Introduced in readings and instructor-led lessons. Practiced in whole-group, small-group, and/or individual activities and discussions with checks for understanding).

Assignment [VM8]: 1.3, 1.5 I/P (Introduced in readings and instructor-led lessons. Practiced in whole-group, small-group, and/or individual activities and discussions with checks for understanding).
<table>
<thead>
<tr>
<th>Week 7</th>
<th>Feb 21 WED (8am-10)</th>
<th>Co-Planning Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Class Feb 19</td>
<td>Candidates will continue to co-plan and “fine tune” their series of three lesson plans as well as collect and test materials. Candidates will experience the thoughtful uses of common materials, make keen decisions in the purchase of items, and maintain an organized manner as to how the materials are being utilized. Candidates will prepare/package “kits” to transport to their site for use in their instruction.</td>
</tr>
<tr>
<td></td>
<td>Assignment: Draft for Lesson Plan #3 (DUE Feb 26)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 8</th>
<th>Feb 26</th>
<th>Science Micro Teaching Projects Begin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BEGIN teaching science lessons at field placement (Tuesday, Feb 27th)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assignment: Inquiry Based Presentation (DUE March 5) Upload to Poly Learn</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 9</th>
<th>March 5</th>
<th>Inquiry Based Presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FINISH teaching science lessons at field placement (Thursday, March 8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assignment: Micro-Teaching Project Presentation (DUE March 12) Upload to Poly Learn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assignment: Learning Segment (Lessons 1-3/Reflections Attached) (DUE March 12) Upload to Poly Learn</td>
<td></td>
</tr>
</tbody>
</table>

Comment [VM9]: 1.3, 1.5, 3.2, 3.3, 3.4, 4.4 I/P (Introduced in readings and instructor-led lessons. Practiced in whole-group, small-group, and/or individual activities related to the topics and readings).

Comment [VM10]: 1.8, 4.4 I/P (Introduced in readings and instructor-led lessons. Practiced in whole-group, small-group, and/or individual activities related to the topics and readings).

Comment [VM11]: Presentation of Assessments
<table>
<thead>
<tr>
<th>Week 10</th>
<th>March 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Growth in Science
Topics include cross-curricular emphasis to encourage more science in the classroom, locating resources, and professional opportunities and websites. Students will also present their microteaching project which details their co-planning and teaching experiences at their placement.</td>
<td>Philosophy of Science Education and Course Evaluation
We will synthesize the significant learnings of the course and evaluate. Students will discuss indicators of what makes a successful science educator and individual philosophies about current and future science education. Students will continue to present with their microteaching projects.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 12</th>
<th>March 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINAL EXAM
8:00-10:00 am
02-126</td>
<td></td>
</tr>
</tbody>
</table>

Comment [VM12]: 6.1, 6.3 I/P (Introduced in readings and instructor-led lessons. Practiced in whole-group, small-group, and/or individual activities and discussions with checks for understanding).

Comment [VM13]: 6.2 I/P (Introduced in readings and instructor-led lessons. Practiced in whole-group, small-group, and/or individual activities and discussions with checks for understanding).
The classroom is set up in a seminar format. The point is to share and listen to one another’s ideas about science, science learning, and science teaching. Materials to support your learning about these ideas include the following books – recommended for your professional library – as well as readings posted to the PolyLearn site.

Professional Materials for the Course

Online resources and other resources that would be good additions to your professional library are shown below.

Ready, Set, SCIENCE
http://www.nap.edu/catalog.php?record_id=11882 (online access)
This resource describes and illustrates findings from decades of research on learning science, particularly in grades K-8. It provides teachers with specific information regarding our understanding of learning and teaching via inquiry.

How Students Learn
http://www.nap.edu/catalog.php?record_id=10126 (online access)
This book describes and illustrates what we know about how students learn specific school subjects (math, science, history), drawing from the principles of human learning. It includes chapters that are specific to teaching inquiry-based science at the elementary and middle school levels.

NGSS for California Public Schools
http://www.cde.ca.gov/pd/ca/sc/ngssstandards.asp (online access)
(printed copy is part of your methods course pack)
This document contains the new standards that California has adopted for science in grades K-12. Districts are beginning to work with these standards and all districts are expected to be using them by 2018.

California CCSS – ELA
(printed copy is part of your methods course pack)
This document describes the English-Language Arts standards for students in California in grades K-12. It includes a section about literacy standards in the area of science for the 6th grade (pp. 52-56).
Science Framework for California Public Schools (not all districts are using NGSS)

http://www.cde.ca.gov/ci/cr/cf/documents/scienceframework.pdf (online access)

This book contains information about and elaboration of California’s most recent science standards for grades K-12. This will be useful if you are working in a district that has not yet moved to the NGSS.

Additional books that can support your learning of the concepts focused on in this course and may be important for your professional library are shown below.

- **Teaching Science To Children: An Inquiry Approach** (6th Ed.)
 by Alfred Friedl & Trish Koontz

 This resource describes teacher- and student-led activities and investigations for life, earth, and physical science topics that are appropriate for use with elementary school-age children. It includes explanations of the science underlying the phenomena in the activities.

- **A Framework for K-12 Science Education**
 http://www.nap.edu/catalog.php?record_id=13165

 This resource describes the ideas that guided the development of the national standards in science (known as the Next Generation Science Standards. If you are particularly interested in science, this book provides more in-depth information about the big ideas we have about what we want students to learn: http://www.nextgenscience.org/next-generation-science-standards)

- **Science for Primary School Teachers**
 by Helena Gillespie and Bob Gillespie

 This book provides foundational information about major science concepts to support teacher understanding of science at the elementary school level.
This resource describes the understanding of science that we would like students to develop by the end of high school. It was an initial guide for how our country might think about the goals of science for pre-college students.

A second part of the project that resulted in this book was the development of concept maps showing desired student learning at different ages, and how those concepts relate to one another across the K-12 grades.

This resource describes and illustrates major concepts about human learning that have been summarized from decades of research.

COURSE ASSIGNMENTS AND ACTIVITIES
Be certain your work reflects the professional and ethical educator that you are becoming. Punctuality, neatness, clarity of expression, including grammar and spelling, will be factors that influence the number of points you attain on ALL work turned in for a grade. Keep copies of everything you turn in for a grade. If you have questions about an assignment, please contact me as soon as possible. *Additional details regarding the following assignments will be discussed in class.

Class Participation, Engagement, and Disposition IS EXPECTED (individual)
Assignments must be completed before class as detailed on the calendar above. You are to thoughtfully and actively participate in all class related activities, including the micro-teaching/field experience component. This course will include a variety of types of discussion and small group activities requiring your presence and active participation. Your attendance and preparation for class are crucial. Verbal participation in the class is expected. Learning in this course is dependent upon in class participation and your disposition with SOE faculty, micro-teaching co-planning partners, and other cohort peers.
Out of Class Assignments (individual)
The out of class assigned activities and readings connect and support in class participation and learning. Assignments will be collected and scored for completion toward establishing your grade in this category.

Inquiry-based Science Presentation (pairs)
You will pair with another candidate to design a digital presentation (via PowerPoint or Keynote) to support student learning about a targeted standard from the NGSS. The presentation is expected to be focused on a question and provide information in a way that can provide elementary students with opportunities to reason scientifically. The information will typically be provided via photographic images pertinent to understanding your targeted science concepts, but diagrams may also be useful. The point is to consider what phenomena and other information to choose, how to sequence it, and how to word and use questions to focus thinking to help students build understanding.

Prior Knowledge Assessment for Science (individual and team-based)
As part of a team, you will help select a topic and concepts on which to assess your students’ knowledge and prior experience, before you provide instruction. This information will allow you to better design instruction to help students build a depth of understanding about your targeted topic. You will collectively design the assessment then you will individually administer the assessment to a small or whole group of students. You will then create a summary report of the prior knowledge of the class with information about the performance of each individual.

Science Micro-Teaching Project (individual and team-based)
As part of a team, you will help design, create plans, then individually teach lessons to a small or whole group of children across three sessions. The instruction is expected to be inquiry-based and involve your students in the practices of science. The team is expected to create individual lesson plans. Lesson plans should include handouts that you plan to use with the students, and the last lesson plan should include an example assessment question (with answer shown) that you give to your students to determine their learning from your instruction. Individually, you are expected to prepare written reflections about your instruction and your students’ learning.

Final Exam (individual)
Students will complete a final exam covering all course material throughout the quarter. The exam will have a variety of question types including, but not limited to, multiple choice, short answer, and short essay. This will be individually completed in class.

GRADING
All assignments are required to be completed on time to receive course credit. Points will be assigned accordingly with students receiving a final letter grade on the following range: 95-100 A 90-94 A- 87-89 B+ 83-86 B 80-82 B- 77-79 C+. A grade of B- or better is necessary for all students in order to receive credit for courses in the MSTEP program.

The goal is to help you focus on developing competencies and dispositions needed to become an exemplary teacher. Consequently, you will be evaluated on your dispositions, as well as your growth in understanding the role and nature of dispositions in teaching, throughout the quarter. Your competencies in teaching, as shown in projects, assignments, and class participation, will likewise be assessed both formally and informally, formatively and summatively.
EVALUATION

<table>
<thead>
<tr>
<th>Assignments</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out of Class (individual)</td>
<td></td>
</tr>
<tr>
<td>Story Behind the Science, Science in the Standard</td>
<td>10%</td>
</tr>
<tr>
<td>Inquiry-based Science Presentation (pairs / individual grade)</td>
<td>10%</td>
</tr>
<tr>
<td>Science</td>
<td>10%</td>
</tr>
<tr>
<td>- science assessment/write-up of students’ prior knowledge (team plan / individual grade)</td>
<td></td>
</tr>
<tr>
<td>Micro-Teaching Project (Total 60%)</td>
<td></td>
</tr>
<tr>
<td>- final lesson plans-each lesson worth 10% (team plan / individual grade)</td>
<td>30%</td>
</tr>
<tr>
<td>Project</td>
<td>10%</td>
</tr>
<tr>
<td>- lesson reflections (3 total) (individual)</td>
<td></td>
</tr>
<tr>
<td>Final Exam (individual)</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

DISPOSITION ASSESSMENT
Each student will also be assessed using the MSTEP Dispositions Assessment form, which will be used in by your methods instructors and university supervisors. These documents will be used as supplementary materials when determining your progress in the MSTEP program. This process ensures that students develop the dispositions necessary for the teaching profession. It is not expected that students will have mastered each of the items on the Disposition form at this point in the program. For this course, assessment will occur at the end of the quarter, unless a special disposition check is warranted.

INSTRUCTOR POLICIES
Attendance:
MSTEP expectations are that you will make every effort to be on time and be ready to engage in class activities and discussions. We understand that emergencies may arise during the course of the quarter. Please let me know as soon as possible if you must be absent. If you are absent, obtain the information you missed from another class member. You are held responsible for the information from each class session whether you are present or not.

MSTEP Absence Policy without an excused absence:
First absence: Loss of class percentage
Second absence: Grade drops by ½ (e.g., An A drops to a B+)
Third absence: Possible removal from the MSTEP program

Therefore, my expectations are that you will make every effort to be on time and be ready to engage in class activities and discussions. My policy is consistent with the university policy on class attendance:
“Students are expected to attend class regularly to keep the quality and quantity of their work high. Absence from classes is regarded as serious. An excused absence can be allowed only by the instructor in charge of the class upon consideration of the evidence justifying the absence presented by the student. An excused absence merely gives the individual who missed the class an opportunity to make up the work and in no way excuses the student from the work required.” Please see the following for “excusable” reasons for missing class: https://academicprograms.calpoly.edu/content/academicpolicies/class-attendance
If students meet the university’s criteria for excused absence, they will be given the opportunity to make up missed work. The instructor reserves the right to determine the details of the missed work to be completed (including due dates and content).

Tardiness: Please make every effort to come to class on time. If you are frequently tardy, it will result in a loss of your class percentage and negatively affect your rating on the Disposition Assessment form.

UNIVERSITY POLICIES

Academic Responsibilities: Students enrolled in a class are responsible for meeting standards of performance and conduct established by the University and the instructor. Students are responsible for completing and submitting all class assignments, examinations, tests, projects, reports, etc., by scheduled due dates, or face penalties. If any problem arises regarding course work or attendance, the student is held responsible for initiating communication and contact with the instructor. In addition, students are held responsible for behavior and conduct adverse to the preservation of order as established by the University and the instructor.

Non-discrimination Policy: Cal Poly and its auxiliary organizations are committed to maintaining and implementing policies and procedures in compliance with applicable CSU, State, and federal nondiscrimination and affirmative action laws, regulations, and policies. Cal Poly supports an environment free of unlawful discrimination on the basis of: race, color, religion, national origin, ancestry, age, sex, sexual orientation, gender identity, marital status, physical disability, mental disability, medical condition, and veteran status.

Accommodations: If you have a disability for which you are or may be requesting an accommodation, please make an appointment with me as well as the Disability Resource Center, Building 124, Room 119, at (805) 756-1395, as early as possible in the term.

Plagiarism - Cal Poly’s Campus Administrative Manual 684.3 states: “Plagiarism is defined as the act of using the ideas or work of another person or persons as if they were one's own without giving proper credit to the source. Such an act is not plagiarism if it is ascertained that the ideas were arrived through independent reasoning or logic or where the thought or idea is common knowledge. Acknowledgement of an original author or source must be made through appropriate references; i.e., quotation marks, footnotes, or commentary. Examples of plagiarism include, but are not limited to the following: the submission of a work, either in part or in whole completed by another; failure to give credit for ideas, statements, facts or conclusions which rightfully belong to another; failure to use quotation marks when quoting directly from another, whether it be a paragraph, a sentence, or even a part thereof; close and lengthy paraphrasing of another's writing without credit or originality; use of another's project or programs or part thereof without giving credit.”

Plagiarism may be inadvertent or purposeful; however, plagiarism is not a question of intent. The course instructor must report all suspected incidences of plagiarism to the appropriate persons in administration. Cheating or plagiarism in any form is considered a serious violation of expected student behavior and may result in disciplinary action. For more information, see the Campus Administrative Manual, Section 6.
SCHOOL OF EDUCATION

VISION

The School of Education develops and supports qualified, competent, and caring education professionals who prepare a diverse student population to become active and thoughtful participants in a democratic society.

MISSION

The School of Education leads the campus in an all-university approach to preparing education professionals. These professionals create, assess, and modify environments, practices, and policies to foster the achievement of each and every learner; they strive for equity in schools and society; and they are committed to inquiry and professional growth for themselves and the advancement of P-20 education. School of Education faculty models leadership in its teaching, scholarship, and service through a grounded, reflective, learn-by-doing approach and through sustained collaborations with its education partners: P-12 schools, families, community colleges, universities, and local, state, and national agencies.

Multiple Subject Teacher Preparation Program: Learning Outcomes

Upon program completion, each teacher candidate will be able to:

1. Effectively engage and support all students in learning.
2. Create and sustain environments that are culturally responsive and effectively support student learning.
3. Demonstrate sufficient understanding of subject matter to effectively organize content-specific pedagogy to promote student learning.
4. Effectively plan instruction and design learning experiences for all students.
5. Effectively create and use assessments to inform instruction and foster student learning.
6. Engage in professional practices and act in ways that foster their professional growth.

CALIFORNIA TEACHING PERFORMANCE EXPECTATIONS (TPEs)

1. Engaging and Supporting All Students in Learning.
2. Creating and Maintaining Effective Environments for Student Learning.
3. Understanding and Organizing Subject Matter for Student Learning Content Specific Pedagogy
4. Planning Instruction and Designing Learning Experiences for All Students
5. Assessing Student Learning
6. Developing as a Professional Educator