ON THE WEIGHT OF THE EVIDENCE FROM CROSS CREEK: 
A REPLY TO TURNER

Richard T. Fitzgerald and Terry L. Jones

In our original paper (Jones et al. 2002), the Cross Creek site is used to challenge Clovis for temporal priority in western North America, but it predates the age of the California Milling stone culture by thousands of years. Unlike Croix that two they consider as alternative colonization scenarios. Relying on old arguments and ignoring recently published findings, Turner cites issues argue that there is insufficient evidence for a maritime culture on the central coast of California at the end of the Pleistocene. In our response, we further discuss implications of the findings from Cross Creek and other studies that support a coastal migration model.

Challenging our interpretation of the Cross Creek site (Jones et al. 2002). Christy Turner (this issue) shows significant underappreciation for the complexities of the western North American archaeological record, how it is sampled, and how it is bracketed in time. He clearly has misunderstood our presentation and misrepresented our primary points. In response, we counter his challenges concerning time and evolution, fauna and tools, and the Alaskan ice barrier. We also take this opportunity to elaborate on our view of the place of the Cross Creek site in the earliest archaeology of western North America.

Our key points on the Cross Creek site were that (1) the recovered component was nearly 10,000 years old in calenderic time; (2) it represented the California Milling Stone horizon or culture; and (3) the Milling Stone culture is so profoundly different from Clovis big-game hunting that it may be the product of a distinctive cultural history—one that involved a separate coastal migration into the New World by broad-spectrum foragers. In short, based on findings from Cross Creek, the Milling Stone culture is now 2,000 years closer to Clovis, but it still shows no technological or adaptive similarities.

Archaeological Time

Christy Turner misrepresents the age of the Cross Creek site, asserting that the oldest corrected date is 9600 BP (this issue, p. 391). Our data table clearly shows 102101 corrected dates of 9900 270, 9650 70, and 9460 100 years B.P. (Jones et al. 2002:217). The oldest measured 14C age is 9500 260 years B.P. Relying on isotope-corrected dates and converting them to calendaric time via calibration, the main component at Cross Creek (excluding outliers) dates ca. 9000–7600 cal. B.C. Calibrated dating of Clovis is ca. 11,500–11,000 cal. B.C. (Piedel 2000:52), making it at least 3,000 years older than Cross Creek, as we fully acknowledged in the original article (Jones et al. 2002:214). Our argument

Richard T. Fitzgerald • Office of Cultural Resource Studies, California Department of Transportation, 111 Grand Ave.,
Oakland, CA 94625-0900
Terry L. Jones • Department of Social Sciences, California Polytechnic State University, San Luis Obispo, CA 93407

American Antiquity, 68(2), 2003, pp. 396–399

Copyright 2003 by the Society for American Archaeology

396
about the implications of the Cross Creek findings, however, had so much to do with their assemblage as in age. More specifically, our conclusions were based on well-documented traits of the California Milling Stone culture and recent findings from the southern California Islands.

The Milling Stone culture has been recognized in California since 1929 (Rogers 1929). In the first synthetic description, Wallace (1951:219-220) summarized Milling Stone as a culture marked by extensive use of milling stones and mortars, general lack of well-made projectile points, few bone or shell artifacts, and burial beneath rock cairns. Aside from the milling tools, the rest of the Milling Stone tool inventory was accurately described as "meager and crude." (Wallace 1951:228). Many Milling Stone sites were investigated prior to the use of radiocarbon dating, but in recent decades, hundreds of radiocarbon dates have been obtained from southern California. Based on some of these findings, early syntheses of Milling Stone established an initial date no earlier than 6000 B.C. (Wallace 1978:36; Moratto 1984:125). The Cross Creek site produced a typical Milling Stone assemblage that pushes the antiquity of the complex back 2,000 years earlier. In many ways, as Turner suggests, this might be somewhat unremarkable if not for the fact that it renders the complex as old or older than those it was thought to postdate, specifically San Diego/Coastal Tradition.

Fauna and Tools

The Milling Stone complex has been recognized at more than a hundred sites in southern California (excluding the Channel Islands). Findings of the last decade show an unequivocal presence in northern California as well (Fitzgerald and Jones 1999; McGuire and Hildebrant 1994). Nearly all who have examined Milling Stone in any detail (e.g., Basgall and True 1985; Wallace 1955, 1978) have concluded that it represents a gathering subsistence regime focused on seeds, other vegetable products (e.g., agave, and yucca), and shellfish (Erlandson 1994). The Milling Stone pattern is remarkably consistent in its emphasis on milling tools and shells over bones and projectile points (Basgall and True 1985; Erlandson 1994; Fitzgerald and Jones 1999; McGuire and Hildebrant 1994).

The Cross Creek site was situated ca. 9 km inland at the time of its occupation. Not surprisingly, it did not produce a large quantity of mollusc remains. However, a careful reading of our article reveals that "as much as 189 g of shell per 10 cm level" (Jones et al. 2002:222) was recovered from 1-x-2-m units processed with 6-mm mesh. Total recovery was well over 5 kg of shell for the entire excavation sample that represented a miniscule percentage of the overall site volume. In his comments, Christy Turner focused solely on the materials from a single control unit, and only on the "deepest level" (stratum 6). He is ultimately correct, however, that shellfish was not the major subsistence focus at this location. Shellfish would have comprised a larger portion of the diet at sites on or close to the immediate shoreline, and we speculated that the inhabitants of Cross Creek split their time between shoreline sites and interior valleys. Milling Stone sites nearly as old as Cross Creek have been documented on the shoreline in the general region, and some of these have produced dense accumulations of shell (Erlandson 1994). Despite its inland location and a favorable preservation environment, however, Cross Creek produced almost no animal bone, which is typical of Milling Stone sites (Erlandson 1994). We concluded from this, as have others, that the inhabitants of Cross Creek consumed very little animal food, and that the dominant tools found in these sites—handstones and milling slabs—must reflect a largely vegetable diet.

Other than Milling Stone, the Lake Mojave complex is perhaps the best documented of the earliest California cultural patterns. Recent investigations date the complex between 9000 and 6000 cal. B.C. (Basgall and Hall 1994; Schreuder 1994), making it contemporary with Cross Creek, but with a very different adaptation. Lake Mojave assemblages are marked by large numbers of projectile points, knives, perforators, formalized flake tools, with fewer cores, cobble and simple flake tools (Basgall 2000). Milling tools are present in Lake Mojave sites, but their numbers are relatively small. For instance, at Fort Irwin in southeastern California, 101 Lake Mojave components yielded 111 projectile points and 1,657 bifaces, but only 25 milling slabs and 11 hand stones (Basgall 2000:131). The Cross Creek deposit alone produced 12 milling slabs and 17 hand stones.

Lake Mojave, San Diego, and Paleo-Coastal are thought to mark hunting-focused economies without milling equipment that emerged from the earlier Clovis/Possible big-game hunting complex, and Lake Mojave sites show many traits that are
logically consistent with an adaptive outgrowth from Clovis. San Dieguito and/or Paleo-Coastal are commonly viewed as adaptive links between late Pleis-
tocene big-game hunting and the Milling Stone gathering economy. Charkoff and Charkoff (1984:490), for example, envision San Dieguito and Lake Mojave as markers of local adjustments made
by big-game hunters to late Pleistocene environ-
mental changes that included the disappearance of megafauna. According to this scenario, it was only later that these hunters shifted toward increased plant
food exploitation and the Milling Stone complex
(Charkoff and Charkoff 1984:105).

As stated in the original Cross Creek paper, it
remains entirely possible that Milling Stone, even at
the greater time depth discovered at Cross Creek, may represent an adaptive outgrowth from Clovis,
but the exaggerated gathering focus of Milling Stone
at 8000 cal. B.C. warrants consideration of alterna-
tive possibilities, particularly in light of recent find-
ings from southern California islands, the initial
exploitation of which has been pushed back dra-
matical in the last decade. Findings from Eel Point
on San Clemente Island (Porcasi et al. 2000), Arling-
ton Canyon on Santa Rosa Island (Johnson et al.
2002), and Daisy Cave on San Miguel Island
(Erlanson et al. 1996) date human occupations as
early as 9750 cal. B.C. The early island-dwellers all
used watercraft, fish, and shellfish, and the Eel Point
site also shows evidence for exploitation of marine
This Paleo-Island lifeway is older than the Milling
Stone expression at Cross Creek, but it shows no simi-
larities to Clovis or Lake Mojave. Despite attempts
by Phil Otto (1956) decades ago to demonstrate oth-
erwise, there is no evidence that early island dwellers
exploited prey mammals, the only insular megafauna. There are also no fixed points known from the islands. Turton is correct, of course, in not-
ing that the earliest coastal and island occupations
still postdate Clovis by at least 1000 calendric years,
and the use of watercraft ca. 12,000 years ago may
reflect the advent of a new technology by previously
land-focused Paleoindians. The Paleo-Island lifeway
and Milling Stone complex on the mainland, how-
ever, are profoundly different from Clovis.

Turton also argues that the lack of marine mam-
mal remains from Cross Creek suggests something
less than a maritime adaptation. Again, the location
of the deposit 9 km inland provides ample explana-
tion for this absence. Even Milling Stone sites on the
shoreline of Halsey Bay might not be expected, how-
ever, to contain marine mammal remains. Research
of the last decade has shown repeatedly that the
early exploitation of marine mammals in west-
ern North America was focused on rookeries where
animals are highly vulnerable to terrestrial predation
(Hildebrandt and Jones 1992; Porcasi et al. 2000).
Such rookeries would only be situated in locations
that meet the physiological requirements of the ani-
mals, and we would not expect them everywhere.
Intensive exploitation of lower-ranked species with
watercraft came later with more intensive maritime
economies such as those represented at Esmeralda
within San Francisco Bay ca. 3,000–4,000 years ago.

The Alaskan Ice Barrier

In summarizing some of the older and/or obscure lit-
erature on possible coastal migrations into the New
World, Christy Turner has done the discipline a ser-
vise in that such writings certainly should not be
overlooked. Missing from Turner’s argument is ref-
ference to recent paleoenvironmental studies that
show that the Alaskan coast was free of ice earlier
than previously thought and that the supposed ice-
free corridor presented a no-more-inviting or viable
entry way into the New World. Recent studies show
that 14,000 years ago the ice-free corridor did not
exist, yet unglaciated conditions were more ex-
sive than previously thought in southeastern Alaska
and British Columbia (Mandryk et al. 2001:383–
305; Dixon 2001:278) has also discussed these new
findings, stating that a coastal migration corridor was
viable by 13,000 years ago, while a midcontinental
route was not open until 11,000 years ago. Given that
humans had invented watercraft no less than 50,000
years ago to settle Australia and that boat use is
demonstrated by archaeological findings from Jap-
enese islands 20,000–25,000 years ago (Erlanson
2001:69), it is not implausible that humans could
reach southern California 12,000 years ago via a
coastal route. Certainly, findings from Cross Creek
far fall far short of proving such a migration, but
definitive data one way or the other are lacking.

Summary

Christy Turner has provided a welcome opportunity
to elaborate on the implications of findings from the
Cross Creek site. For the most part we can hardly
disagree with his claim that the Cross Creek findings
do not prove a coastal migration corridor. We think it more important, however, that a separate coastal migration has hardly been disproven, and that the archaeological record continues to produce evidence that does not match the expectations of many existing theories. Recent findings are consistent with a distinctive migration corridor along the northeastern Pacific, but we need to discover older coastal manifestations if we are going to link broad-spectrum adaptations of South America to coastal migration.

References Cited

Baglivi, M. E.

Baglivi, M. E., and M. C. Hall

Baglivi, M. E., and D. L. Tooe

Chorikoff, J. L., and K. K. Chorikoff

Dixon, E.

Edens, J. M.

Edens, J. M.


Fedick, S. J.

Fitzgerald, R. T. and T. L. Jones

Hildbrandt, W. R., and T. L. Jones

Johnson J. T. W., R. L. Ingam, and D. F. Mann.


Moran, M. J.

Ott, P. C.

Perino, J. E., T. L. Jones, and L. M. Radek

Rogers, D. B.
1929. Preliminary Map of the Santa Barbara Coast. Santa Bar bara Museum of Natural History, Santa Barbara, California.

Schoen, A.

Wallace, W. J.

Wallace, W. J.

Received November 13, 2002. Accepted November 17, 2002.