
Explaining prehistoric variation in the abundance of large prey:
A zooarchaeological analysis of deer and rabbit hunting along
the Pecho Coast of Central California

Brian F. Codding a,*, Judith F. Porcasi b, Terry L. Jones c

aDepartment of Anthropology, Stanford University, 450 Serra Mall, Building 50, Stanford, CA 94305, USA
bCotsen Institute of Archaeology, University of California, Los Angeles, CA 90095, USA
cDepartment of Social Sciences, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA

a r t i c l e i n f o

Article history:
Received 7 May 2009
Revision received 7 October 2009
Available online 14 November 2009

Keywords:
Foraging
Resource depression
Prestige hunting
Paleoclimatic variability
Human behavioral ecology
Zooarchaeology
Central California

a b s t r a c t

Three main hypotheses are commonly employed to explain diachronic variation in the relative abun-
dance of remains of large terrestrial herbivores: (1) large prey populations decline as a function of anthro-
pogenic overexploitation; (2) large prey tends to increase as a result of increasing social payoffs; and (3)
proportions of large terrestrial prey are dependent on stochastic fluctuations in climate. This paper tests
predictions derived from these three hypotheses through a zooarchaeological analysis of eleven temporal
components from three sites on central California’s Pecho Coast. Specifically, we examine the trade-offs
between hunting rabbits (Sylvilagus spp.) and deer (Odocoileus hemionus) using models derived from
human behavioral ecology. The results show that foragers exploited a robust population of deer through-
out most of the Holocene, only doing otherwise during periods associated with climatic trends unfavor-
able to larger herbivores. The most recent component (Late Prehistoric/Contact era) shows modest
evidence of localized resource depression and perhaps greater social benefits from hunting larger prey;
we suggest that these final changes resulted from the introduction of bow and arrow technology. Overall,
results suggest that along central California’s Pecho Coast, density independent factors described as cli-
matically-mediated prey choice best predict changes in the relative abundance of large terrestrial herbi-
vores through the Holocene.

! 2009 Elsevier Inc. All rights reserved.

Introduction

Factors that cause diachronic variation in the zooarchaeological
abundance of large prey have been the center of much debate in re-
cent decades. Researchers focused on hunter–gatherer populations
have attempted to address this issue in many locations around the
world, including South Africa (e.g., Binford, 1984; Klein, 1975,
1976, 1982; Klein et al., 2007), Western Europe (e.g., Binford,
1983; Grayson and Delpech, 1998, 2003; Grayson et al., 2001;
Jochim, 1976, 1998), the Mediterranean Basin (e.g., Stiner, 2001,
2006; Stiner and Munro, 2002; Stiner et al., 2008; Stutz et al.,
2009) and Western North America (e.g., Bayham, 1979; Broughton,
2002; Broughton and Bayham, 2003; Broughton et al., 2008; Butler,
2000; Butler and Campbell, 2004; Byers and Broughton, 2004;
Byers and Ugan, 2005; Byers et al., 2005; Cannon, 2000, 2003;
Codding and Jones, 2007a; Hildebrandt and McGuire, 2002;
Hildebrandt et al., 2010; Hockett, 2005; Janetski, 1997; Jones and
Codding, 2010; Jones et al., 2008a, 2009; McGuire and Hildebrandt,

2005; McGuire et al., 2007; Whitaker, 2009). From the research
dealing with remains deposited by behaviorally modern humans,
three main hypotheses have emerged that attempt to explain pat-
terned fluctuations in the abundance of large prey.

The first hypothesis states that this patterning is caused by opti-
mal economic decisions that lead foragers to preferentially target
larger prey over smaller prey,which, over time results in the depres-
sion of large prey populations and a subsequent decline in their
archaeological proportions (see Bayham, 1979; Broughton, 1994).
Predictions derived from the resource depression hypothesis sug-
gest that the prolonged acquisition of large prey negatively impacts
their populations (although, seeWhitaker, 2008, 2009), leading for-
agers to shift to smaller prey which is archaeologically identified by
(P1a) a reduction in proportion of larger prey to smaller prey (e.g.,
Broughton, 1994; Stutz et al., 2009) and (P1b) changes in age struc-
ture of larger prey (e.g., Stiner, 2006), both ofwhichmay either influ-
ence, or be influenced by forager settlement and mobility, (P1c)
resulting in changes in the processing and transport of skeletal
elements from large prey (Cannon, 2000, 2003).

The second hypothesis proposes that patterns in the proportion
of large prey remains are driven by changes in the size of social
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groups and/or the frequency of social aggregations both of which
are linked to the social payoffs of hunting (Hildebrandt andMcGuire,
2002, 2003; Hildebrandt et al., 2010; McGuire and Hildebrandt,
2005; McGuire et al., 2007, see also Aldenderfer, 2006; Cannon,
2009; Potter, 1997, 2000; Plourde, 2008). Predictions from the
prestige hunting hypothesis suggest that an increase in the social
payoffs of large game hunting should lead to (P2a) a diachronic in-
crease in the archaeological visibility of large prey relative to small
prey, accompanied (P2b) by an increase in the logistic mobility of
foragers (sensu Binford, 1980) caused by hunters having to travel
further to acquire large prey at higher costs.

The third hypothesis suggests that proportional fluctuations in
large prey remains reflect stochastic climatic variability that differ-
entially impacts large terrestrial herbivores over smaller prey. Pre-
dictions from the environmental stochasticity hypothesis suggest
that (P3) climatic changes associated with either mean aridity or
extreme seasonality negatively impact large herbivore populations
(i.e., artiodactyls) more severely than smaller prey (i.e., leporids),
causing a decrease in the encounter rates with large prey and a de-
crease in their archaeological visibility (Byers and Broughton,
2004; Broughton and Bayham, 2003; Broughton et al., 2008; Gray-
son and Delpech, 1998).

The outcome of these debates has the potential to influence our
understanding of a suite of issues, including the ecological impacts
of forager subsistence strategies, the social and ritual role of large
game hunting, and the effect of environmental variability on hu-
man behavior. However, to work thorough these hypotheses, zoo-
archaeological analysis must disentangle the multiple causes that
may lead to the same material pattern (Klein and Cruz-Uribe,
1984; see also Grayson, 1984; Lyman, 1993, 2008; Reitz and Wing,
2008). Here we attempt to accomplish this by testing the above
predictions with a zooarchaeological analysis of 11 well-dated
components from three sites on the Pecho Coast of Central Califor-
nia (Fig. 1); these sites represent all of the excavated assemblages
in the study area that have produced significant numbers of faunal
remains, and our geographic limit focuses our controlled compari-
sons (sensu Klein and Cruz-Uribe, 1984) on temporal rather than
spatial variability. Importantly, it must first be shown that tempo-
ral variation in the abundance of large prey within these assem-
blages results neither from variation in sample size (see Grayson,
1978, 1981, 1984; see also Cannon, 2001) nor taphonomic pro-
cesses (e.g., Lyman, 1984, 1985, 1994). Then, analysis may turn
to quantitative tests of foraging models derived from human
behavioral ecology (for an overview, see Smith and Winterhalder,
1992; Winterhalder and Smith, 2000; for an archaeologically spe-
cific review, see Bettinger, 1991: pp. 83–130, 2006; Bird and
O’Connell, 2006; Grayson and Cannon, 1999; Lupo, 2007). By deriv-
ing predictions from general models applicable to zooarchaeologi-
cal data, researchers have been able to successfully unravel the
possible sources of variation in archaeofaunal assemblages. In this
paper we test quantitative predictions derived from each alterna-
tive hypothesis, focusing on the trade-offs between hunting larger,
mobile terrestrial prey (deer) and smaller less mobile terrestrial
prey (rabbits).1 While not the final word on the subject, a careful
examination of these data will help to shed light on the debates sur-
rounding the causes of variation in large prey abundance and con-

tribute to our overall understanding of prehistoric human–prey
dynamics.

Archaeological and environmental background

After Greenwood’s (1972) initial work in the region, Jones
(1993, 2003) was the first to systematically integrate material cul-
ture sequences along the central California coast with the well
established cultural chronologies of the San Francisco Bay and Sac-
ramento/San Joaquin Delta area in the north (e.g., Bennyhoff, 1978;
Bennyhoff and Hughes, 1987; Lillard et al., 1939) and the Santa
Barbara Channel to the south (e.g., King, 1982, 1990; Rogers,
1929). Most recently, the central coast sequence has been defined
by six distinct periods (Jones et al., 2007):

I. Late (700–181 BP*)
II. Middle–Late Transition (MLT; 950–700 BP*)
III. Middle (2550–950 BP*)
IV. Early (5450–2550 BP*)
V. Millingstone (or Early Archaic; 9950–5450 BP*)
VI. Paleo-Indian (pre-9950 BP*)

While the Paleo-Indian Period is marked only by isolated fluted
projectile points (e.g., Mills et al., 2005), large residential middens
dating to all of the later periods are common throughout the region
in varying densities (Jones et al., 2007). The earliest middens dating
to the Millingstone Period frequently occur on the coast or show
some connection with the coast (i.e., the presence of shellfish).
While some sites show an emphasis on marine resources, others
suggest an emphasis on terrestrial prey; when all the Millingstone
assemblages in the region are examined together, subsistence ap-
pears diverse including shellfish, birds, mammals, fish, seeds and
other plant resources (Jones et al., 2007, 2002, 2008a, 2009). Milling
equipment including slabs and hand stones are ubiquitous and pro-
jectile points occur less frequently than during later time periods.

The transition to the Early Period is marked by an increase in
the number of sites occupied suggesting an increase in population
density; technological changes include the initial adoption of the
mortar and pestle and an increase in the quantity of multifunc-
tional projectile points, most of which belong to the central coast
stemmed series (Jones et al., 2007; Stevens and Codding, 2009).
An increase in exogenous obsidian also suggests a spike in interre-
gional trade (Jones et al., 2007; see also Jones, 2003). These trends
continue through the Middle Period, captured by Jones et al.’s
(2007) reference to both time periods as a material expression of
the same ‘‘Hunting Culture” (sensu Rogers, 1929; see also Green-
wood, 1972).

The continuity of the Early and Middle periods is disrupted by
an abrupt transition phase referred to as the Middle–Late Transi-
tion Period. This time period is marked by widespread site aban-
donment (Jones and Ferneau, 2002; Jones et al., 2007, 1999) and
rapid changes in technology including the adoption of smaller,
more specialized projectile points (Stevens and Codding, 2009)
and fishhooks (Codding and Jones, 2007a; Codding et al., 2009).
In many ways this period is a true transition, characterized by a
combination of traits that when recovered independently, differen-
tiate the Early/Middle and Late Periods.

The Late Period is marked by a proliferation of single compo-
nent sites associated with bedrock mortars; these sites occur more
frequently in the interior, albeit with continued, but proportionally
reduced occupation of the coast (Jones et al., 2007). Both inland
and coastal sites show evidence of being occupied year round
(Jones et al., 2008b). The Late Period is also typified by the adoption
of small uniform projectile points associated with bow and arrow
technology (Jones et al., 2007).

1 The term ‘‘mobility” is here used as Bird et al. (2009), to refer to a prey’s ability to
evade capture during post-encounter pursuit. While rabbits may indeed be fast over
short distances, we suggest that at the scale which matters in this context, deer are
better able to evade a hunter by moving outside the range of hand-held or even
projectile weapons. This suggests that while deer may be larger than rabbits and thus
provide a larger harvest, pursuit success may be more variable as a function of their
mobility (see also Jochim, 1976; Stiner et al., 2000). For this reason, it should not be
assumed a priori that deer are a higher ranked resource than rabbits. However,
quantitative experimental work in western North America is needed to confirm this –
particularly useful would be data on pursuit successes and failures with deer and
rabbits using various technologies.
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The Pecho Coast

Situated within the Central Coast Region (sensu Moratto, 1984;
see also Jones et al., 2007), the Pecho Coast is a 20 km wide penin-
sula extending about 8 km into the Pacific Ocean between Morro
(Estero) Bay and San Luis Obispo Bay in San Luis Obispo County,
California (Fig. 1). Just east of the coastal terrace, low mountains
known as the Irish Hills rise sharply to elevations of about 550 ft.
With this increase in elevation, the landscape transitions from
mosaics of coast scrub and chaparral to coastal oaks, chaparral
and grasslands bisected by a series of small, densely wooded drain-
ages that flow to the Pacific Ocean. The mouths of these creeks
form small sandy beaches along a coastline otherwise dominated
by exposed rocky shores, cliffs and bluffs.

To date, nearly 50 shell middens are known along the Pecho
Coast. The first systematic work was performed by Pilling (1951),
who surveyed the area and described some of the surface findings.
Since that time, various test excavations have provided informa-
tion on temporary camps (e.g., Breschini and Haversat, 1988), how-

ever, only three residential sites have been excavated extensively
enough to produce significant faunal assemblages: CA-SLO-2, CA-
SLO-9, and CA-SLO-585 (see Codding and Jones, 2006, 2007a; Cod-
ding et al., 2009; Greenwood, 1972; Jones et al., 2008a, 2009).
Greenwood (1972) excavated six sites in preparation for the con-
struction of Diablo Canyon Nuclear Power Plant in 1968. Two of
these sites (CA-SLO-2, -585) provided substantial trans-Holocene
faunal assemblages that were not analyzed until recently (Jones
et al., 2008a, 2009). Each of the Diablo sites has produced diverse
artifact assemblages indicating that they functioned as residential
bases, with no substantive evidence for changes in site function
through time (Jones et al., 2008a, 2009). The Coon Creek site (CA-
SLO-9) was excavated between 2004 and 2007 in order to salvage
a portion of the midden that was eroding into the Pacific Ocean
(Codding and Jones, 2007a; Codding et al., 2009). While findings
from these sites have been discussed individually (Codding and
Jones, 2007a; Codding et al., 2009; Greenwood, 1972; Jones et al.,
2008a, 2009), results from all of this work are synthesized here
for the first time.

Fig. 1. Site locations situated along the Pecho Coast within the Central Coast Region of California.
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Methods and models

Excavation methods

CA-SLO-2 and CA-SLO-585were excavated in 1968with amixed
recovery strategy aimed at generating substantial samples of diag-
nostic artifacts, macro andmicro faunal constituents. All units were
excavated in 10 cm arbitrary levels (see Greenwood, 1972; Jones
et al., 2008a, 2009). After excavation, all material was curated at
the San Luis Obispo County Archaeological Society Collection Facil-
ity in 1972 from which it was retrieved for analysis in 2004.

Excavations at CA-SLO-2 resulted in a total recovery volume
of 109 m3 from a deposit that extended to a depth of 3.4 m.
(Greenwood, 1972). After 32 years of storage, some of the collec-
tions (or their provenience) were lost or damaged, but remains
from 98.9 m3 were still available for analysis in 2004. Most of the
recovery volume came from 30 1 ! 2 m units that were excavated
by hand in arbitrary 10-cm levels processed with 6-mm (1/4 in.)
mesh dry screens. In addition, a 0.25 ! 0.25 m column sample
was excavated (0.8 m3) and wet screened with 1-mm mesh; and
a 1 ! 1 m unit, was screened with nested 6-mm (1/4 in.) and
3-mm (1/8 in.) mesh (see also Jones et al., 2008a).

At CA-SLO-585, a total of 39.4 m3 was excavated by hand from
ten 1 ! 2 m units screened dry with 6-mm (1/4 in.) mesh, and one
1 ! 1 m control column was used to sample shell and small fish re-
mains. In addition to these hand excavated units, 30.0 m3 of depos-
it was excavated mechanically with a backhoe for a total recovery
volume of 69.4 m3 (see Greenwood, 1972; Jones et al., 2009).

CA-SLO-9 was excavated between 2004 and 2007 through a
joint partnership between the California State Parks Department
(Department of Parks and Recreation, DPR) and California Poly-
technic State University, San Luis Obispo (see Codding and Jones,
2006, 2007a; Codding et al., 2009). Nineteen 1 ! 2 m units were
excavated and processed with 3-mm (1/8 in.) mesh and one
1 ! 2 m unit was processed with 6-mm (1/4 in.) mesh. In addition,
three 1 ! 1 m control units were water-processed through 3-mm
(1/8 in.) mesh and sorted in the laboratory.

Radiometric determinations and component definitions

A total of 51 radiocarbon dates was used to define components
for the current study (CA-SLO-2 = 34; CA-SLO-9 = 7; CA-SLO-
585 = 10; see Codding and Jones, 2007a; Jones et al., 2008a,
2009). Dates were calibrated using CALIB 5.0.2 (Stuiver et al.,
2005) with a local marine correction curve of 290 ± 35 for dates ob-
tained from shell (Stuiver and Reimer, 1993). All dates reported
here are calibrated, as denoted by an asterisk. A chronology was
developed based on the relationship between depth and the mid-

points of the calibrated radiocarbon dates. Components were then
contextually situated based on the regional chronology of Jones
et al. (2007). While this technique cannot increase the chronolog-
ical precision of the components, which is often reduced in these
open-air middens as a result of post-depositional mixing, it does
accurately categorize components in a less biased way than simply
lumping faunal remains by cultural time period. Moreover, this ap-
proach attempts to define the unit of analysis (the component) at
the smallest scale allowed by the chronological controls in order
to avoid problems associated with artifactual patterns that may re-
sult from temporal averaging (Lyman, 2003; Jones and Codding,
2010).

For the two multi-component sites (CA-SLO-2 and CA-SLO-585),
calibrated midpoint (years BP) values were plotted against mini-
mum depth and the relationship was fitted with a smoothing
spline (k = 10,000; see Fig. 2). Two extreme outliers were excluded
from the CA-SLO-2 dates. The spline essentially describes the rela-
tionship between depth and date by interpolating unknown values
and without making any strong assumptions about rates of depo-
sition. The spline and associated radiocarbon dates were used to
determine the vertical extent of each occupational deposit in
1000 and 2000 year increments for CA-SLO-2 and CA-SLO-585
respectively. One exception was the 500 BP* component at CA-
SLO-585, which overlaps with the same component at CA-SLO-2.
Because of this, these two components were aggregated to repre-
sent about the last 1000 years of occupation (the Late Period).
The defined components relative to time and depth are shown in
Fig. 2. Table 1 provides a summary of each temporal component
by depth. Each faunal element was assigned to a corresponding
1000 or 2000 year period based on depth. For all subsequent anal-
yses, each time period was plotted at the midpoint value (e.g.,
1000–2000 BP* is plotted at 1500 BP*). The midpoint for each com-
ponent differs, thus each component is referenced by its associated
calibrated midpoint in years BP*.

As the assemblage from CA-SLO-9 represents a single compo-
nent dating to the Middle–Late Transition Period (see Codding
and Jones, 2006, 2007a; Codding et al., 2009), and because this
time period was lacking from both of the Diablo Canyon sites
(see Jones et al., 2008a, 2009), data from CA-SLO-9 were plotted
at the 1000 BP* point as it represents the transition between the fi-
nal Middle period component centered at 1500 BP* and the Late
Period component centered at 500 BP*.

Zooarchaeological methods, measures and models

All bird, mammal, and reptile remains were identified by Judith
Porcasi using reference collections from the Los Angeles County
Museum of Natural History and the Zooarchaeology Laboratory

Fig. 2. Component definitions for (a) CA-SLO-2 and (b) CA-SLO-585 based on the relationship between depth (cm) and BP* midpoint. Fitted spline (k = 10,000) describes the
relationship between depth and calibrated years BP. Components appear in shaded grey.
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at the Cotsen Institute of Archaeology at University of California,
Los Angeles. All specimens were identified to the most discrete tax-
onomic level possible based on diagnostic features. In the absence
of such features, bones were assigned to classes (e.g., Mammal,
Aves, etc.) or subclasses (e.g., marine mammal, carnivore, etc.)
and to size categories (small, medium, or large). In addition, the
element, part of element, side, age, number, weight, and evidence
of modification (i.e., burned, gnawed, cut, or worked) were, to
the degree possible, recorded for each specimen. The age of speci-
mens was determined by reference to the degree of epiphyseal fu-
sion: detached epiphyses and diaphyses lacking epiphyses were
classified as juvenile, diaphyses with partially fused epiphyses
were considered sub-adult and fully fused epiphyses were classi-
fied as adult. Data were entered into Microsoft AccessTM. Tabular
data from each site were then compiled in a database where each
layer for each site was linked with an associated temporal position
determined by radiocarbon dates (see above).

Before the datasets were evaluated relative to the three alterna-
tive hypotheses, assemblages were evaluated to determine if pat-
terning could be the result of sample size or density mediated
attrition. The effect of sample size on zooarchaeological prey abun-
dance was examined by comparison with the total NISP for each
component. The effect of density mediated attrition was examined
following Grayson (1988). Bulk density values from Lyman (1984,
1985) were assigned to each non-repeatable artiodactyl element
for each component unit level. Counts were based on the best rep-
resented section elements (e.g., distal ends of phalanges, acetabu-
lum of the innominate, the glenoid fossa of scapulas, etc.). Limb
shafts were excluded and only the vertebral body (or centrum)
and the articular ends of ribs were counted. Only the earliest com-
ponent (9000 BP*) from CA-SLO-585 was excluded from the analy-
sis because it lacked any elements to which bulk density values
could be assigned due to small sample size.

The second and main set of analyses involved deriving and test-
ing predictions from each hypothesis within a framework of
behavioral ecology. Two models were utilized: the prey choice
model (PCM; see MacArthur and Pianka, 1966; Schoener, 1971;
Stevens and Krebs, 1986), and a central place foraging model
(CPF; see Metcalfe and Barlow, 1992; Orians and Pearson, 1979;
see also Bettinger et al., 1997). Archaeological applications of each
are reviewed and discussed by Bettinger (1991: pp. 83–130), Bird
and O’Connell (2006), Grayson and Cannon (1999), Lupo (2007)
and Shennan (2008).

Zooarchaeological measures of prey choice

In order to test predictions derived from the PCM, prey abun-
dance and diversity indices were calculated for each temporal

component. Following the logic outlined by Bayham (1979; see
also Broughton, 1994), abundance indices were calculated for each
component as the proportion of the number of specimens identifi-
able (NISP) to the larger taxa relative to the number of specimens
identifiable to the smaller taxa, or:

P
NISPaP

NISPa þ
P

NISPb

where NISPa represents the total number of bones identifiable to the
larger taxa and NISPb represents the total number of bones identifi-
able to the smaller taxa at some consistent taxonomic level. So to
remain comparable with the variety of ways in which abundance
indices have been calculated in previous work, and to make sure
that diachronic trends are consistent across levels of taxonomic
identification, this study calculates three indices: (1) the Odocoileus
Index (OI) measures the ratio of all Odocoileus hemionus remains rel-
ative to all O. hemionus plus Sylvilagus spp. remains; (2) the Artio-
dactyl Index (AI) measures the same trade-off but at higher
taxonomic level, examining the ratio of all Artiodactyl remains rel-
ative to all artiodactyl plus Leporid remains; (3) the proportion of O.
hemionus remains to the total NISP of economically significant ter-
restrial taxa identified to the genus level (% Odocoileus), which mea-
sures the trade-off between hunting deer or engaging in any other
terrestrial hunting activity. These indices are designed to measure
the trade-offs associated with searching (in a patch) and pursuing
one prey type over another or the trade-offs between deciding to
hunt one prey type over the other if they occur in two separate
patches. The latter models prey choice analogous to Smith’s
(1991) usage.

Originally, abundance index values were presumed to measure
the encounter rates with the higher-ranked prey type assuming
that prey rank scales with prey body size (see Griffiths, 1975; Sim-
ms, 1985; Ugan, 2005; Wilson, 1976; but see Stiner et al., 2000).
Based on this logic, abundance indices should provide a proxy
measure for overall return rate (see Bayham, 1979). However, re-
cent research has shown that body size is not a reliable measure
of post-encounter return rate due to the positive correlations be-
tween prey body size, prey mobility, and pursuit failures (Bird
et al., 2009; see also Lee, 1968; Sih and Christensen, 2001; Smith,
1991; Winterhalder, 1981). If prey encounters are rare, a single
failed pursuit may indeed lead to a failed overall foraging bout
(and thus a return rate of 0); however, dense patches of larger prey
may mitigate this risk as a forager’s overall probability of bout suc-
cess (that is, returning with something) increases with each
encounter and pursuit. In this sense, the probability of bout success
with larger prey may be a more significant predictor of prey choice
than simply post-encounter return rate. However, unlike a prey
item’s post-encounter return rate, bout success is expected to

Table 1
Component definitions.

No. Site Depth (cm) BP* midpointa BP* range Cultural periodb Geologic periodc

1 CA-SLO-2 0–50 500 0–1000 Late Late Holocene
1 CA-SLO-585 0–50 500 0–1000 Late Late Holocene
2 CA-SLO-9 0–110 1000 700–1000 MLT Late Holocene
3 CA-SLO-2 50–130 1500 1000–2000 Middle Late Holocene
4 CA-SLO-2 130–180 2500 2000–3000 Middle Late Holocene
5 CA-SLO-585 50–70 3000 2000–4000 Middle Late Holocene
6 CA-SLO-585 70–90 5000 4000–6000 Early Middle Holocene
7 CA-SLO-2 180–260 5500 5000–6000 Early Middle Holocene
8 CA-SLO-585 90–170 7000 6000–8000 Millingstone Middle Holocene
9 CA-SLO-2 260–300 7500 7000–8000 Millingstone Middle Holocene

10 CA-SLO-2 300–330 8500 8000–9000 Millingstone Early Holocene
11 CA-SLO-585 170–220 9000 8000–10,000 Millingstone Early Holocene

a All dates refer to calibrated years before present.
b Assigned following the cultural chronology by Jones et al. (2007).
c Assigned by dividing the Holocene (12,000 years) into three even periods.
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change across time and space, potentially with predictable results
(see Bird et al., 2009; Bliege Bird et al., 2009). In order to deal with
such issues of prey rank, zooarchaeological analyses should utilize
multiple measures when evaluating predictions derived from the
PCM, one of the most useful being assemblage diversity (Lupo,
2007: 157–158; see also Dean, 2007).

Margalef’s Index and Simpson’s Index were calculated from the
economically significant terrestrial fauna (Table 1), which excludes
potentially invasive burrowing rodents; each index corresponds to
the two commonly measured components of diversity: richness (S)
and evenness (D) respectively (see Magurran, 1988, 2004). Marga-
lef’s index is essentially the number of taxa in an assemblage (S or
RTAXA, see Grayson, 1984; Lupo, 2007) with control for sample
size effects. Evenness measures the degree to which the species
in an assemblage are equally represented; its opposite, sometimes
referred to as dominance, is interpreted as the degree to which an
assemblage is dominated by a single species. Simpson’s index is
ideal for relatively small samples as it makes no assumption about
the underling distribution of the population from which the sam-
ple was drawn, moreover it has an intuitive interpretation: the
probability that two individuals randomly drawn from the sample
will belong to different species (see Magurran, 2004). Simpson’s in-
dex was calculated with the following equation:

D ¼
X ni½ni % 1&

N½N % 1&

! "

where ni equals the number of individuals in the ith species and N
equals the total number of individuals (Magurran, 2004). In order to
have the index value increase with evenness, it is typically repre-
sented as 1/D. Magurran (2004:239) provides a worked out
example.

The basic prediction derived from the PCM states that if foragers
experience declines in encounter rates (or perhaps bout success
rates) with higher-ranked prey, then foragers should widen their
‘‘diet breadth” (the evenness component of diversity) by incorpo-
rating lower-ranked items into the diet. This also holds true if we
consider the key variable to be variability in hunting bout success.
This prediction avoids the troubles with ranking prey as a more di-
verse diet should correspond with decreasing encounter (or bout
success) rates with higher-ranked prey (whatever that prey may
be) (see e.g., Dean, 2007). While this approach seems to work
(Jones, 2004), because diversity measures lack any measure of
rank, they alone are problematic since prey ranking is central to
the PCM (Winterhalder and Bettinger, 2010; see also Madsen,
1993; but see Broughton and Grayson, 1993). However, if evenness
indices are highly correlated with changes in the relative abun-
dance of larger prey, then the changes in large prey may be symp-
tomatic of overall trends affecting human subsistence patterns,
including but not limited to, lower overall encounter rates with
highly ranked prey. In essence, diachronic correlations between
abundance index values and the evenness component of diversity
can be thought of as a diagnostic test to determine whether or
not the prey in question (the sole numerator of the abundance in-
dex) is highly ranked.

Zooarchaeological measures of central place foraging

While considerations of prehistoric prey choice outline the
search and handling components of foraging, understanding pre-
historic foraging decisions often requires an understanding of the
processing and transport components of resource acquisition. To
this end, research here utilized a CPF model. Building on Orians
and Pearson (1979), Metcalfe and Barlow (1992; alternatively see
Bettinger et al., 1997) developed a formal model examining the
trade-offs human foragers face when attempting to transport re-

sources from an acquisition location back to a home base. The basic
model assumes that a given forager’s goal is to maximize the rate
at which resources are delivered to a central place. Depending on
the distance (travel time), the number of foragers and the size
and character of the resource, foragers must decide whether to re-
turn home with an unprocessed resource (bulk transport) or differ-
entially process resources in the field prior to transport (field
processing and partial discard). As different parts of the same plant
or animal resource vary in their potential food utility (e.g., bone vs.
meat), the model predicts that if foragers are trying to maximize
the utility of a single load returned home, they should differentially
process low utility parts (leaving them at the acquisition site) and
transport high utility parts home. When the distance from the
acquisition point is large, the model predicts that foragers will dif-
ferentially process and discard elements to a higher extent than
when distances are short. When distances are very short, the mod-
el predicts that foragers will field process to the lowest extent pos-
sible and make multiple trips to the central place. Cannon (2003)
incorporated elements of a central place foraging model into a prey
choice model to develop his central place forager prey choice mod-
el. Relying on two archaeologically visible variables (bone counts
and utility value of bone elements), the model provides a tool for
examining both the encounter rates with high ranked prey through
abundance indices and the time foragers were required to travel in
order to return the acquired prey to a central place.

The utility of a given element is calculated through Metcalfe
and Jones’s (1988) Standardized Whole Bone Food Utility Index
or (S)FUI (see also Binford, 1978). Through an examination of
(S)FUI values, differential field processing should be reflected at
the central place by an overall increase in mean (S)FUI, represent-
ing the differential deposition of high utility parts. Trends in the
opposite pattern (i.e., a decrease in (S)FUI values) are also indica-
tive of differential butchering, possibly resulting from the removal
of high value meat from high value bone in the field (see Lupo,
2001, 2006; O’Connell et al., 1988). To test this prediction, (S)FUI
values were assigned to each non-repeating artiodactyl element
or element complex per unit level following Cannon (2003). As
with bulk density values, values were assigned only to the best
represented section of a given element. One component (9000
BP*) lacked any artiodactyl specimens to which (S)FUI values could
be assigned, and two others (5000 BP* and 8500 BP*) had only two
each, all of these were excluded from further analysis. While (S)FUI
values require additional refinement (see Lupo, 2006), comparing
mean (S)FUI values between multiple components through time
or space can be a useful relative measure of how butchering and
transport decisions vary. Since, variation in (S)FUI values may ulti-
mately be the product of density mediated attrition (Grayson,
1984, 1989; Lyman, 1984, 1985), the effect of bone density on pat-
terns in (S)FUI values needs to be controlled (see above).

Statistical methods

As ordinary least squares (OLS) regression requires that the
dependent variable is an unbound, normally distributed continu-
ous variable, it is often an inappropriate model to use with archae-
ological data. The typical alternatives adopted in many
zooarchaeological studies are rank order tests (e.g., Spearman’s
rho [q]). However, these tests unrealistically rank cases, losing con-
tinuous data in the process. To avoid the limitation of rank order
tests, we utilized generalized linear models (GLM) with a specified
distribution family (or error structure) and link function. When the
dependent variable is bound between an upper and lower limit
(e.g., between 0 and 1), as is the case for all proportional data
and for most faunal indices of abundance and diversity, a binomial
family GLM was used with a logit (or logistic) link function (see
Crawley, 2007:513–526; 569–609; Faraway, 2006; Kieschnick
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and McCullough, 2003). Following Menard (2002), likelihood ratios
(R2

L ) were calculated for each binomial-logit GLM as the -2 log-like-
lihood (-2LL) value of the difference (GM , or v2) between the -2LL
value of null model (D0, which includes only the intercept) and the
-2LL value of the full model (DM, which includes the intercept plus
the independent variable or variables) divided by the -2LL value of
the null model (D0); in other words, R2

L ¼ GM=D0. In this form, R2
L

values are equal to the reduction in unexplained deviance resulting
from the inclusion of the independent variable(s) and can be inter-
preted as analogous to r2 values in OLS regression. For each GLM
the appropriate weights (or observations) were assigned for each
component as the total number of possible faunal elements (e.g.,
for OI values, the total NISP of terrestrial fauna identified at the
genus level).

Chi-square (v2) tests were also utilized to assess the differences
in bone counts across assemblages. A Monte Carlo simulation (with
2000 iterations) was used to generate possible cell counts under
the conditions imposed by the structure of the actual data (i.e.,
the number of cells plus row and column totals), from which a
v2 value is calculated and an alpha (p) value assigned based on
comparing the observed values to the iterated simulation (Hope,
1968; R Development Core Team, 2009). Secondary contingency
table analysis examined the contribution of each individual cell
count to the overall difference in the contingency table. To deter-
mine the contribution of each cell count to the significance of the
v2 test, the probability that each cell count could occur was calcu-
lated based on expected values generated from row and column to-
tals. Drawing on the binomial probability theorem, this approach
calculates the probability (P) of some observed count, or ‘‘success”
(k) occurring in some number of trials (n) when the probability of
‘‘success” on any one trial is known (p).2 The probability of a count
occurring can be estimated by using expected counts generated from
row and column totals, as in a v2 test (Everitt, 1977). Grayson and
Delpech (2003) perform a similar analysis following Everitt
(1977:46–48), but here alpha values were calculated by a function
written in R (R Development Core Team, 2009). The benefit of this

approach is its ability to discriminate between multiple bone counts
that contribute to variation in a single measure, of particular interest
in this case, being the differential effect of deer (or artiodactyl) and
rabbit (or leporid) bone on indices of taxonomic abundance.

In other cases where the means from two non-normally distrib-
uted samples (or components) with unequal sums were being
compared, a Kruskal–Wallis rank sum test was performed (R
Development Core Team, 2009). As this test makes no assumptions
about the distribution of cases, it is more appropriate than com-
mon tests (e.g., a t-test) for data that cannot be shown or assumed
to be normally distributed. All analyses were performed in JMP 7.0
(SAS Institute Inc. 2007) and/or R 2.6.2 (R Development Core Team,
2009).

Results

Of 18,432 complete bones or bone fragments, 3102 non-intru-
sive elements were identified to the genus or species level. Of
these, 1889 represented terrestrial fauna (Table 2). These data indi-
cate that O. hemionus remains dominate all but two of the compo-
nents (9000 BP* and 1000 BP*; Table 3). Prior to testing the
hypotheses proposed above, four diagnostic tests of the dataset
were run: the first determined if trends in deer remains are consis-
tent across taxonomic levels of identification, the second examined
whether or not trends in the relative abundance of deer are corre-
lated with the overall diversity of the resources taken, and the
third and fourth tested to see if the relative trends in deer bone
counts are only a function of sample size or density mediated
attrition.

There is a significant positive relationship between OI and AI
(R2

L ¼ 0:0843, p < 0.0001; Table 4), indicating that patterns in the
abundance of deer relative to rabbits are consistent across taxo-
nomic levels of identification. There is also a strong positive rela-
tionship between OI and the abundance of deer remains relative
to all economically significant terrestrial faunal remains (% Odocoi-
leus; R2

L ¼ 0:0820, p < 0.0001) suggesting that the variation in deer
remains is consistent relative to all other terrestrial taxa, not just
rabbit remains. These results indicate that the diachronic patterns
observed in these data are not an artifact of a single index.

2 This analysis was executed in R (R Development Core Team, 2009) using a
function written by Ian G. Robertson (Stanford University) based on a suggestion by
James Allison. The same analysis can be done with the TWOWAY function in Kintigh’s
(2009) Tools for Quantitative Archaeology.

Table 2
Summary of economically significant terrestrial fauna per component (BP* midpoint).

Class Family Taxon Common name 500 1000 1500 2500 3000 5000 5500 7000 7500 8500 9000

Reptilia Bufonidae Bufo boreas Western toad 0 0 1 0 0 0 0 0 0 0 0

Amphibia Testudinidae Clemmys marmorata Western pond turtle 2 0 13 0 0 0 0 0 1 0 0

Aves Accipitrinae Aquila chrysaetos Golden eagle 0 0 1 0 0 0 0 0 0 0 0
Corvidae Corvus brachyrhynchos Crow 0 0 2 1 0 0 0 0 0 0 0
Mimidae Mimus polyglottos Mocking bird 0 1 0 0 0 0 0 0 0 0 0
Phasianidae Callipepla californica California quail 0 0 2 0 0 0 0 0 0 0 0
Tytonidae Tyto alba Barn owl 0 0 1 0 0 0 0 0 0 0 0

Mammalia Leporidae Lepus californicus Jackrabbit 0 1 2 0 0 0 1 0 0 0 1
Sylvilagus spp. Cottontail rabbit 38 52 185 52 2 1 64 7 23 3 13

Castoridae Castor canadensis American beaver 0 0 0 0 0 0 0 0 1 0 0
Canidae Canis sp. Dog/Coyote 14 13 73 11 3 0 7 0 4 1 2

Urocyon cinereoargenteus Grey fox 1 0 0 0 0 0 0 0 0 0 0
Vulpes vulpes Red fox 0 0 0 0 0 0 1 0 0 0 0

Felidae Felis concolor Puma 0 0 1 1 0 0 0 0 0 0 0
Lynx rufus Bobcat 1 1 6 1 0 0 3 0 0 0 1

Mustelidae Mephitis mephitis Striped skunk 2 1 1 0 0 0 0 0 0 0 0
Taxidea taxus American badger 2 0 4 0 1 0 0 0 0 0 0
Mustela sp. Weasel 0 0 1 1 0 0 0 0 0 0 0

Procyonidae Procyon lotor Racoon 4 3 5 2 0 0 1 0 0 0 0
Cervidae Cervus elaphus Elk 0 0 2 0 0 0 0 0 1 0 0

Odocoileus hemionus Black-tailed Deer 213 7 522 209 9 9 198 18 49 4 4

Total 277 79 822 278 15 10 275 25 79 8 21
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As predicted by the PCM, the evenness component of diversity
(Simpson’s Index) has a significant and negative effect on OI
(R2

L ¼ 0:0900, p < 0.0001). This shows that when the relative abun-
dance of deer decreases relative to rabbits, the overall evenness of
terrestrial prey acquired increases. In other words, when the rela-
tive abundance of deer declines, foragers are not focusing on an-
other single species, but on a more even distribution of many
species. This suggests that, at least in this case, deer were highly
ranked prey because a decline in their relative abundance leads
to an overall increase in proportion of all other terrestrial prey ta-
ken on encounter. Whether this is the result of increasing bout fail-
ures with deer or simply fewer encounters, this result matches the
prediction derived from the PCM, showing that a decrease in the
relative abundance of highly ranked prey is also associated with
an increasing diversity (evenness) in the number of resources
taken.

If patterns in the relative abundance of large game are only epi-
phenomenal to problems with sample size, then measures of prey
abundance should exhibit strong co-linearity with total assem-
blage size (Grayson, 1981, 1984; see also Orton, 2005). Here, there
is no significant relationship between sample size (total NISP) and
OI (R2

L ¼ 0:0001, p = 0.7156; Table 4), indicating that patterns in the
abundance of large game are not an artifact of sampling.

If variation in the relative abundance of large prey is due to
taphonomic processes, then the mean density of artiodactyl bones
in should increase with age (Grayson, 1988, 1989; Lyman, 1984,
1985, 1994). An analysis of variance on 486 non-repeatable ele-
ments indicates that there is not a significant relationship between
mean artiodactyl bone density and time (p = 0.7277; see Table 5).
As these data are technically non-parametric (Shapiro–Wilk
W = 0.92, p < 0.0001), this result was also checked with a bino-
mial-logit GLM (R2

L ¼ 0:0004, p = 0.3368), which confirmed the re-
sult. There was also no significant relationship between (S)FUI
values and mean bulk density of artiodactyl bones (R2

L ¼ 0:0001,
p = 0.8499). This suggests that density mediated attrition does
not contribute significantly to temporal variation in either the
abundance of artiodactyls or variation in (S)FUI values.

Hypothesis 1: resource depression

The logic of the resource depression hypothesis is derived from
the PCM, which, when supplemented with the assumption that

prey body size scales with return rate (see above), leads to the pre-
diction that large prey (in this case deer) should always be pursued
on encounter to the exclusion of other prey until the encounter
rate with large prey declines to a point where the overall return
rate (search and pursuit; E/T) is lower than the post-encounter
(e/h) return rate for smaller prey; that is, when the inclusion of
lower ranked prey increases the overall return rate. If human pre-
dation causes large prey populations to decline, then this process
should happen overtime as a function of increased hunting pres-
sure. Archaeologically, this hypothesis has been tested with bone
count data, large prey age structure, and through an examination
of differential butchering.

The first prediction of the resource depression hypothesis (P1a)
states that if the abundance of large game varies in response to hu-
man predation pressure, then sustained human exploitation
should lead to a decrease in the proportion of large prey remains
relative to small prey remains over time (e.g., Bayham, 1979;
Broughton, 1994; Cannon, 2000, 2003; Janetski, 1997; see also
Grayson, 2001). A test of this prediction shows that there is not a
significant relationship between Odocoileus index values and time
(R2

L ¼ 0:0013, p < 0.0856; Table 4), indicating that there is no evi-
dence for a decrease in the proportion of deer remains to rabbit re-
mains through time. In fact, a close inspection of Fig. 3 suggests
that if the Middle–Late Transition (1000 BP*) component were ig-
nored, the overall trend throughout the Holocene would be a gen-
eral increase in the abundance of deer in the Early–Middle

Table 3
Abundance and diversity indices for economically significant terrestrial fauna per component.

Index Measure 500 1000 1500 2500 3000 5000 5500 7000 7500 8500 9000

OI Odocoileus/Sylvilagus 0.85 0.11 0.74 0.80 0.82 0.90 0.76 0.72 0.68 0.57 0.24
AI Artiodactyl/Leporid 0.91 0.22 0.82 0.86 0.88 0.94 0.84 0.85 0.76 0.67 0.30
% Odocoileus Odocoileus/sum NISP 0.76 0.09 0.64 0.75 0.6 0.9 0.72 0.72 0.62 0.5 0.19
S (RTAXA) Diversity (richness) 9 8 17 8 4 2 7 2 6 3 5
Margalef’sa Diversity (richness) 1.60 1.60 2.38 1.24 1.11 0.43 1.07 0.31 1.14 0.96 1.31
(1/Simpson’s)a Diversity (evenness) 1.6 2.2 2.2 1.7 2.6 1.3 1.7 1.7 2.1 3.1 2.5

a See Magurran (1988, 2004).

Table 4
Summary of results from the generalized linear models.

Dependent variable Independent variable DF Estimate v2 (GM) D0 R2
L

p

OI AI 1 5.18 184.75 2192.81 0.0843 <0.0001 '
OI % Odocoileus 1 4.92 179.86 2192.81 0.0820 <0.0001 '
OI Simpson’s 1 %1.87 197.26 2192.81 0.0900 <0.0001 '
OI Total NISP 1 <0.01 0.18 2192.81 0.0001 0.6686
Mean bone density BP* midpoint 1 <0.01 0.92 2509.63 0.0004 0.3368
Mean bone density Mean (S)FUI 1 <0.01 0.04 650.86 0.0001 0.8499
OI BP* midpoint 1 <0.01 2.96 2192.81 0.0013 0.0856
OIa BP* midpoint 1 <0.01 14.10 1996.39 0.0071 0.0002 '

a Model with the Middle–Late Transition component (1000 BP*) excluded from the analysis.

Table 5
Mean bulk artiodactyl bone density per component.

BP* n Mean bulk densitya

500 73 0.40
1000 2 0.51
1500 203 0.40
2500 88 0.38
3000 4 0.33
5000 3 0.39
5500 73 0.39
7000 13 0.37
7500 26 0.38
8500 1 0.25
9000 0 –

a Values assigned following Grayson (1988).
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Holocene with relative stability through the Middle–Late Holo-
cene; the opposite of the result predicted by the resource depres-
sion hypothesis. Indeed, if the Middle–Late Transition component
is excluded from analysis, the proportion of deer relative to rabbits
(OI) increases significantly as a function of time (BP*; R2

L ¼ 0:0071,
p = 0.0002; see Table 4). This finding is not entirely unexpected gi-
ven Whitaker’s (2008, 2009) recent work which suggests that,
based on their life-history traits, deer may be much less suscepti-
ble to anthropogenic resource depression than previously thought.
With the Middle–Late Transition component excluded, this trend
resembles at least superficially patterns described by Hildebrandt
and McGuire (2002) who explain the departure from the predic-
tions of the resource depression hypothesis with reference to the
prestige hunting hypothesis; however, further analysis is required
to examine if deer acquisition costs also increase collinearly with
the increase in deer relative to rabbits (see below).

Broughton (1995, 1997, 1999, 2002) and others (Stiner et al.,
2000; Butler, 2000) suggest that an examination of prey age struc-
ture can also provide or corroborate evidence of resource depres-
sion: if prey age profiles indicate a significant shift in the
exploited age structure of prey, then these changes are probably
due to human overexploitation leading to a change in the available
prey. A test of the second resource depression hypothesis (P1b)
supports the results from P1a, showing that there is no significant
change in the age structure of artiodactyls exploited through time
(v2 = 17.971, p = 0.5152; Table 6). This result shows that the age
structure of deer that hunters acquired did not vary through time
any more than could be due to chance.

Cannon (2000, 2003) proposed a third measure of resource
depression, suggesting that anthropogenic overexploitation could
be ‘‘invisible” when examined by bone counts, but could be identi-
fied by the food utility of elements deposited in archaeological
sites. Based on the logic of the PCM and CPF models, (P1c) if local
resource depression forces foragers to travel further to acquire
large prey, an acquired carcass will be field processed (butchered)
to a greater extent in order to maximize a single load transported
back to a central place, resulting in an increase in (S)FUI values. The
results of a Kruskal–Wallis test show that the mean (S)FUI values
per component differ significantly from one another (v2 = 14.69,
DF = 7, p = 0.0402; Table 7). However, this result is entirely depen-
dent on the Late Period component centered at 500 BP*. When this
component is excluded from the analysis, the other components do
not differ significantly from one another (v2 = 5.59, DF = 6,
p = 0.4702), nor do they differ from a null set of artiodactyl ele-

ments (i.e., a complete skeleton; see Table 7). This suggests that
prehistoric foragers along the Pecho Coast did not differentially
butcher and transport artiodactyl carcasses until the Late Period,
when mean (S)FUI values are significantly lower than a null set

Fig. 3. Odocoileus index values per component plotted by years BP* midpoint. The relationship is described by a loess regression (a = 0.5) with predicted values fit per year
(solid black line) and 95% confidence intervals based on the standard error of the fit (dashed black lines).

Table 6
Representation of artiodactyl elements identifiable by age per component. Counts are
observed values, expected values were generated based on the v2 test.

BP* Adult Juvenile Sub-adult Total

Count Expected Count Expected Count Expected

500 102 101.66 15 13.63 4 5.71 121
1000 4 4.20 1 0.56 0 0.24 5
1500 352 339.41 35 45.52 17 19.07 404
2500 130 133.58 18 17.91 11 7.51 159
3000 6 5.04 0 0.68 0 0.28 6
5000 4 4.20 1 0.56 0 0.24 5
5500 144 150.38 24 20.17 11 8.45 179
7000 10 12.60 4 1.69 1 0.71 15
7500 28 28.56 6 3.83 0 1.61 34
8500 1 0.84 0 0.11 0 0.05 1
9000 2 2.52 1 0.34 0 0.14 3

Total 783 105 44 932

v2 = 17.971, p = 0.5152.

Table 7
Summary of artiodactyl (S)FUI values per component and the results of a Kruskal–
Wallis test comparing (S)FUI values from each component to the (S)FUI values from a
null (complete) set of elements.

BP* N Mean (S)FUI v2 DF P

500 53 29.40 9.75 1 0.0018*

1000 2 21.10 1.54 1 0.2144
1500 172 37.94 1.38 1 0.2400
2500 75 36.46 2.80 1 0.0940
3000 3 57.97 0.64 1 0.4242
5000 1 37.00 – – –
5500 62 39.02 0.80 1 0.3713
7000 7 32.21 0.80 1 0.3715
7500 20 41.85 0.00 1 0.9951
8500 1 19.40 – – –
9000 0 – – – –

Complete 118 38.22 – – –

Note: because the components centered at 5000 BP* and 8500 BP* only had a single
specimen to which (S)FUI values could be assigned and the 9000 BP* component
had none, they were excluded from this analysis.
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of elements (v2 = 9.75, DF = 1, p = 0.0018; see Table 7). This implies
that during the Late Period, foragers were selectively butchering
and returning lower utility artiodactyl remains to the central place
than would be expected by chance alone. While this result is the
opposite of Cannon’s (2003) resource depression prediction, it is
still indicative of differential processing, potentially resulting from
foragers stripping high value meat from high value bones in order
to transport carcasses over longer distances (see Lupo, 2001, 2006;
O’Connell et al., 1988). This suggests that artiodactyl populations
were being locally suppressed by human hunting during the Late
Period.

Hypothesis 2: prestige hunting

Cannon’s (2003) model also provides a set of predictions that
can be used to test the prestige hunting hypothesis. Initially build-
ing on ethnographic work by Hawkes (1991, 1993) and others,
Hildebrandt and McGuire (2002, see also Hildebrandt and
McGuire, 2003) proposed that the abundance of large prey varies
through time in response to changes in social organization which
alter the rewards associated with acquiring large prey. Later cast
in the framework of Costly Signaling Theory (McGuire and Hilde-
brandt, 2005; McGuire et al., 2007; see Bliege Bird, 2007; Bliege
Bird and Smith, 2005; Bliege Bird et al., 2001; Hawkes and Bliege
Bird, 2002; Smith and Bliege Bird, 2000; Smith, 2004; Smith
et al., 2000; Zahavi, 1975), the prestige hunting hypothesis predicts
that an increase in group size or the frequency of social aggrega-
tions will lead to a synchronous increase in the benefits individuals
gain from acquiring large game: as group size increases, a success-
ful hunters’ audience increases as well, providing a greater poten-
tial payoff for signaling strategies. While this may lead to an overall
decrease in the archaeological abundance of large prey (see Cod-
ding and Jones, 2007b; Jones and Codding, 2010), it is hypothesized
by Hildebrandt and McGuire (2002, 2003; McGuire and Hilde-
brandt, 2005) that the relative abundance of large taxa will in-
crease, leading in turn to a relative increase in acquisition costs
because foragers engaged in a signaling strategy should differen-
tially seek out larger prey, ultimately having to travel further to
encounter artiodactyls (McGuire et al., 2007). As predicted by the
CPF, foragers should then spend a greater amount of time differen-
tially processing acquired prey to increase the utility of a single
load returned to the central place. In the terms of Cannon’s
(2003) model, (P2a) an increase in the relative abundance of large
prey coupled with (P2b) an increase in mean (S)FUI could support
this hypothesis (see also Jones et al., 2008a).

As shown above, there is no significant correlation between OI
and time, showing that there is no diachronic increase in OI as pre-
dicted by the prestige hunting hypothesis (see Table 4). However,
as noted above, when the decrease in OI associated with the Mid-
dle–Late Transition (1000 BP*) component is ignored, the trend
does show a significant increase in the proportion of deer relative
to rabbits through time. This is marked by a low abundance of deer
in the two early Holocene components that later increases in the
Early–Mid Holocene. Although this general trend is predicted by
the prestige hunting hypothesis (Hildebrandt and McGuire,
2002), it could also be a function of environmental changes that
benefited deer populations in the leading to a higher encounter
rate with deer (Byers and Broughton, 2004). To support the pres-
tige hunting hypothesis, the data would have to show an increase
in deer acquisition (i.e., an increase in OI) in despite of high acqui-
sition costs.

However, as shown through the analysis of butchering and
transport practices above, there is no change in acquisition costs
through these time periods. In fact, the deer remains deposited
during this transition do not differ significantly from a complete
deer carcass, suggesting that deer were only acquired at low costs

within a distance where the transport of nearly entire carcass was
feasible. This implies that foragers acquired deer when locally
available near their central place, and did not incur greater costs
to travel long distances (passing over other resources in the pro-
cess) to differentially acquire deer.

The only evidence for differential butchering possibly consis-
tent with the prestige hunting hypothesis occurs not during the
Early–Mid Holocene increase in deer, but in the Late Holocene.
The Late Period component (centered at 500 BP*) shows evidence
of differential butchering and transport, suggesting a more logistic
hunting strategy than during other time periods (Table 7). This also
implies greater acquisition costs during this time period. While not
proving that male hunters gained prestige from hunting large
game in the daily business of foraging, these data suggest that for-
agers were acquiring deer at a higher overall cost; if such costs are
paired with an increase in deer remains relative to rabbits, this
may support the prestige hunting hypothesis. Further clarification
of these trends may be found through tests of the environmental
stochasticity hypothesis.

Hypothesis 3: environmental stochasticity

If the abundance of large prey varies as a result of large-scale
environmental factors, then relative measures of prey abundance
should scale with stochastic fluctuations in paleoclimate that dif-
ferentially impact one prey type over another. Contemporary stud-
ies of deer ecology have shown that population densities decline
with prolonged aridity (Lawrence et al., 2004; Mackie et al.,
1982, 2003). Rabbits, like most other fast-breeding small mam-
mals, are less affected by large-scale trends in precipitation than
slow-breeding ungulates. If this is the case, (P3) then particularly
arid or seasonally arid time periods should be associated with
archaeological signatures that show significantly less deer and sig-
nificantly more rabbit remains resulting from declines in the
encounter rates with deer. Based on previous research in western
North America, this should be the case in the Early to Mid Holocene
(see Byers and Broughton, 2004; Byers et al., 2005; Kennett et al.,
2007) and during the Middle–Late Transition component centered
at 1000 BP* which is associated with the Medieval Climatic Anom-
aly (aka the Medieval Warm Period; see Brunelle and Anderson,
2003; Graumlich, 1993; Jones and Schwitalla, 2008; Jones et al.,
1999; Kennett and Bottman, 2006; Pilloud, 2006; Raab and Larson,
1997; Stine, 1994, 2000; Wiess, 2002).

Examining the probability that each deer and rabbit bone count
would occur shows that both predictions are upheld, with the ear-
liest Holocene and Middle–Late Transition components showing
lower deer bone counts and higher rabbit bone counts than would
be expected by chance alone (Table 8). These results show that OI
values for earliest component centered at 9000 BP* are low as re-
sult of significantly fewer deer remains than expected (p = 0.005)
and significantly more rabbit remains than expected (p = 0.0007),
suggesting that climate differentially impacted deer populations
in the Early Holocene. However, the relative abundance of deer in-
creases dramatically after this component. That the predicted in-
crease in deer abundance occurred much earlier along the Pecho
Coast than elsewhere in western North America (see e.g.,
Broughton et al., 2008), suggests an important local difference in
precipitation, water availability or seasonality; as others have sug-
gested (see Hockett, 2005; Jones and Waugh, 1997; Zeanah, 2004)
such local variability may be more important than large scale
trends. The second specific prediction was also met for the Mid-
dle–Late Transition component centered at 1000 BP*, which shows
significantly fewer deer bones than expected (p < 0.0001) and sig-
nificantly more rabbit bones than expected (p < 0.0001). This sug-
gests that OI values during this time represent the impact of the
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Medieval Climatic Anomaly on local deer populations which
caused a decline in hunters’ encounter and success rates.

Two other statistically significant patterns, not clearly predicted
by the environmental stochasticity hypothesis, also appear (see
Table 8). The first significant pattern shows fewer rabbits than ex-
pected at 2500 BP* (p = 0.0223) without a significant accompanying
difference in deer remains. While significant, this trend does not
appear to have a discernable interpretation when viewed in asso-
ciation with other trends and does not have clear implications
for any of the other hypotheses tested here; although, it could indi-
cate that hunting bout success with deer during this time was so
high that foragers spent little time pursuing rabbits. The other
significant pattern occurs in the Late Period component centered
at 500 BP*, where there are significantly more deer remains than
expected (p = 0.0187) and significantly fewer rabbit bones than
expected (p = 0.0001). When viewed in context with the evidence
for differential butchering during this time period (Table 7) this
result seems to support both the resource depression and the pres-
tige hunting hypotheses which has interesting implications for the
interactions between localized resource depression and the social
role of hunting.

Discussion and conclusion

Analyses of the Pecho Coast assemblages suggest that dia-
chronic patterns in deer abundance were neither a product of sam-
pling size nor density mediated attrition. Moreover, the relative
patterns in the importance of deer were robust across all levels
of taxonomic identification and co-vary negatively with measures
of evenness. As predicted by the PCM, this suggests that deer were
a highly ranked prey item and/or that when hunting bout success
with deer was relatively reliable, foragers spent little or no time
pursuing other terrestrial resources. Of the three hypotheses pro-
posed to explain diachronic variation in the abundance of large ter-
restrial prey, findings suggest that climatically-mediated prey
choice is the most significant factor. Throughout most of the Holo-
cene, foragers along the Pecho Coast exploited a robust population
of deer, but against this backdrop, three components stand out as
anomalous.

First, the component centered at 9000 BP* represents the behav-
ior of some of the first inhabitants of this region. Data from this
early Millingstone component is marked by relatively low deer re-
mains relative to rabbits, a pattern that has been noted elsewhere
in the region (Lebow et al., 2007; Stevens et al., 2004) and else-
where in California (Erlandson, 1994; McGuire and Hildebrandt,
1994; but see Hildebrandt and Carpenter, 2006:290). When the
data showing significantly fewer deer remains and more rabbit re-

mains than expected is coupled with previous paleoenvironmental
work, this pattern is best explained by evidence of climatically de-
pressed deer populations, as suggested by other studies in western
North America (e.g., Broughton et al., 2008; Byers and Broughton,
2004; Byers et al., 2005); although, the subsequent increase in deer
seems to occur earlier on the Pecho Coast than elsewhere in wes-
tern North America. As there is no evidence for changes in settle-
ment or mobility during this transition (Jones and Codding,
2010; Jones et al., 2008a, 2009; Table 7), this change in the abun-
dance of deer is probably due to local ecological differences that af-
fected deer populations. However, as noted by other researchers,
patterns in the Early Holocene do suggest a difference in foragers’
gender division of labor than what is evident during the Middle
and Late Holocene; specifically, early California foragers may have
experienced greater overlap between men’s and women’s prey
choice due to the low abundance of larger prey (Hildebrandt and
McGuire, 2002; Jones, 1996; McGuire and Hildebrandt, 1994; Zea-
nah, 2004; but see Kuhn and Stiner, 2006). Immediately following
this time period, the abundance of deer increases, and remains rel-
atively stable for the majority of the Holocene until about 1000 BP*

(see Fig. 3).
The Middle–Late Transition occupation centered at 1000 BP* is

the second component that stands out relative to all of the others.
It is marked by the lowest OI values of all the assemblages, driven
by both deer bone counts that are significantly lower than ex-
pected and rabbit bone counts that are significantly higher than ex-
pected (Table 8). As deer are impacted more severely than rabbits
by droughts, this trend is interpreted as a local expression of the
Medieval Climatic Anomaly; which has been shown to have severe
impacts throughout California (Jones et al., 1999; Jones and
Schwitalla, 2008). The restructuring of the terrestrial resource base
caused by the Medieval Climatic Anomaly may also have driven
foragers to acquire prey more frequently in marine patches, as sug-
gested by other work along the California coastline where evidence
shows that foragers relied increasingly on the marine environment
to dampen the effects of a depressed terrestrial ecosystem (e.g.,
Jones and Kennett, 1999; Kennett, 2005; Kennett and Kennett,
2000). Overall, these patterns suggest that the Medieval Climatic
Anomaly initiated a dramatic shift in the available resources and
perhaps altered human population densities, shifting conditions
towards something similar to what foragers experienced in the
Early Holocene. In response to these changes, it appears that coast-
al California foragers rapidly adapted by altering their subsistence
strategies to the new environment. Such environmental changes
may also have influenced variation in gender division of foraging
labor: if men were primarily responsible for acquiring deer and
environmental conditions caused deer populations to collapse
which reduced both encounter and bout success rates with deer;

Table 8
Observed, expected, standardized residuals and binomial probabilities associated with counts of deer (Odocoileus hemionus) and rabbit (Sylvilagus spp.) bones per component.
Significant values are marked with an asterisk. The direction (positive or negative) of the significant trends are shown by the standardized residuals.

BP* Deer (Odocoileus hemionus) Rabbits (Sylvilagus spp.)

Observed Expected Residual Probability Observed Expected Residual Probability

500 213 185.34 2.03 0.0187 ' 38 65.66 %3.41 0.0001 '
1000 7 43.57 %5.54 <0.0001 ' 52 15.43 9.31 <0.0001 '
1500 522 522.05 %0.00 0.5107 185 184.95 0.00 0.5098
2500 209 192.72 1.17 0.1144 52 68.28 %1.97 0.0223 '
3000 9 8.12 0.31 0.4246 2 2.88 %0.52 0.4510
5000 9 7.38 0.59 0.3220 1 2.62 %1.00 0.2641
5500 198 193.46 0.33 0.3755 64 68.54 %0.55 0.3143
7000 18 18.46 %0.11 0.5190 7 6.54 0.18 0.4799
7500 49 53.17 %0.57 0.3104 23 18.83 0.96 0.1947
8500 4 5.17 %0.51 0.4111 3 1.83 0.86 0.2777
9000 4 12.55 %2.41 0.0050 ' 13 4.45 4.06 0.0007 '

v2 = 165.06, p = 0.0005.
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then men’s overall contribution to subsistence may have decreased
(see Bliege Bird et al., 2009), or men may have targeted alternative
resources. While men’s continued pursuit of deer may have been
rewarded with increased social benefits (including prestige) due
to an increase in acquisition costs, such a strategy could not have
been maintained by a large portion of the population and thus,
could not have contributed significantly to these faunal remains
(see Codding and Jones, 2007b).

Immediately following this interval of anomalous climate, con-
ditions superficially return to the former pattern showing a high
proportion of deer remains relative to rabbits. On closer inspection,
however, the Late Period component centered at 500 BP* repre-
sents the third atypical assemblage. During this time rabbit bone
counts were significantly lower than expected and deer bone
counts were significantly higher than expected. Moreover, (S)FUI
values indicate that these bones were of lower overall food utility
than a complete deer carcass, indicating higher transport and
search costs. While variability in the previous time periods sup-
ports the environmental stochasticity hypothesis, these changes
in the final component suggest an interaction between the other
two hypotheses. First, the changes in butchering practices suggest
that foragers had to travel further in order to successfully acquire
deer. This pattern may be a product of more permanent human set-
tlements along the Pecho Coast in the Late Holocene (see Jones
et al., 2008b) which either increased deer mortality rates, or led
to behavioral resource depression where deer avoided areas fre-
quented by human hunters (see Charnov et al., 1976). The bone
count data suggests the latter, as foragers acquired more deer than
expected during the late period, suggesting that any negative im-
pact foragers may have had on deer populations was only a local
phenomena and acquisition was still possible by incurring higher
travel costs. Such costs may have been mitigated by increased so-
cial benefits to those who could successfully acquire larger prey, as
predicted by the prestige hunting hypothesis (Hildebrandt and
McGuire, 2002; McGuire and Hildebrandt, 2005). These interac-
tions suggest an interesting dynamic between ecological, demo-
graphic and social factors where human populations depressed
local deer populations, simultaneously increasing the benefits
and costs of hunting deer.

These combined impacts may be due to introduced technology
that increased return rates or hunting bout success rates with deer.
Grayson and Cannon (1999) discuss how archaeologists utilizing
foraging models tend to hold the impacts of changes in technology
on return rates constant through time, despite evidence for pro-
found affects of technology on prey acquisition (e.g., Bettinger
et al., 2006; Lupo and Schmitt, 2002, 2005; O’Connell and Hawkes,
1984; O’Connell and Marshall, 1989; Winterhalder, 1981). As the
Late Holocene marks dramatic changes in flake stone technology
along California’s Central Coast, including changes in projectile
point morphology suggesting the adoption of the bow and arrow
(see Jones et al., 2007; Stevens and Codding, 2009), the unexpected
increase in deer remains may be the result of changing return rates
and/or pursuit success rates resulting from newly introduced
weapon technology. However, this may require a better under-
standing of how exactly changes in projectile technology affect
hunting return and/or success rates with deer and other large
ungulates.

Other than these anomalous departures from the generalized
Holocene pattern, the relative homogeneity of the other assem-
blages has interesting implications for understanding prehistoric
human–prey interactions. These data show that foragers along
the Pecho Coast were able to exploit a large, stable population of
deer throughout the Holocene without negatively impacting or
suppressing their populations. However, this should not be taken
as evidence of conservation-oriented behavior, especially since an
extreme case of the opposite pattern is also evident in the faunal

remains from these sites: human caused extinction of the flightless
duck (Chendytes lawi; see Jones et al., 2008a,c). Rather, these results
imply that even over long time periods, human–prey interactions
involving large ungulate species may be more regulated by density
independent factors (i.e., factors unrelated to predator–prey popu-
lation dynamics) than density dependent ones (i.e., random exter-
nal effects). Specifically, while we should predict that increases in
human population densities and decreases in foraging mobility
(effectively increasing the number of foragers per unit area) should
negatively impact prey populations (see Winterhalder and Lu,
1997), possibly leaving clear archaeological signatures of such a
process (e.g., Stutz et al., 2009), we should also expect that differ-
ent prey species should respond in different ways to human preda-
tion depending on their behavior and life-history characteristics
(Whitaker, 2008, 2009). Those species with relatively ‘‘faster” life
histories should be less affected than those with ‘‘slower” ones.
While deer should be more susceptible to overhunting than rab-
bits, they may be less so than some marine mammals (e.g., Califor-
nia sea lions [Zalophus californianus]) and even other terrestrial
mammals (e.g., elk [Cervus elaphus]) which has important implica-
tions for the predicted effects of human hunting on prey popula-
tions (Whitaker, 2008, 2009). There may be requisite threshold
levels in human population densities resulting in sustained preda-
tion pressure before deer populations can be severely depressed by
human hunting. Given that elk should be more susceptible to over-
exploitation than deer and that their populations did not disappear
from regional archaeological faunas until ca. 1500 BP* (Table 1; see
also Jones and Codding, 2010; Lebow et al., 2005), prehistoric
human populations in the region may have not reached such a
threshold. If this is the case, it may be that the local extirpation
of elk resulted from the extreme aridity associated with the Medi-
eval Climatic Anomaly; however, a more regional systematic anal-
ysis is required to answer this question with certainty.

These findings from the Pecho Coast suggest that throughout
the Holocene, human hunting pressure and fluctuations in the so-
cial role of large game hunting had less of an impact on diachronic
patterns in relative deer abundance than did stochastic environ-
mental factors that differentially impacted deer over rabbits (e.g.,
the Medieval Climatic Anomaly). In other words, when controlling
for spatial variability, temporal variation in the abundance of large
prey relative to small prey is best described as climatically-medi-
ated prey choice. This does not, however, mean that humans had
no impacts on prey populations or that hunting carries no prestige;
indeed, it may be that the overriding impact of climatic variation
on prey density simply masks or drowns out important demo-
graphic and social variation liked to human–prey interactions. As
such, it may be that such patterning is not easily visible at archae-
ological time scales.

While the trends examined here may not hold in other regions
of western North America, these results suggest that (1) any single
hypothesis is unlikely to provide an adequate explanation of pre-
historic variability in human hunting decisions and (2) incorporat-
ing theoretical and statistical models that allow (rather than
ignore) stochastic variability may be critically important in
explaining diachronic patterns in prey choice. By systematically
approaching zooarchaeological data in such a way, researchers
may ultimately come to a better understanding of the interrelated
articulations between human behavioral variability, ecological
dynamics and specific moments in prehistory.

Acknowledgments

We owe an enormous debt of gratitude to Roberta Greenwood
for running such impressive excavations in 1968, and to Elise
Wheeler, Nathan E. Stevens and the Cal Poly, SLO field and lab clas-
ses from 2004 to 2008 –this paper would not exist without their

58 B.F. Codding et al. / Journal of Anthropological Archaeology 29 (2010) 47–61



hard work. Analysis benefited tremendously from the advice and
assistance of Richard G. Klein, James Holland Jones, Mike Cannon
and especially Ian G. Robertson. Douglas W. Bird, Rebecca Bliege
Bird, Nathan E. Stevens, Ian Hodder, Bill Hildebrandt and an anon-
ymous reviewer read previous versions of this paper – we are dee-
ply indebted to them for their thoughtful comments which
stimulated thinking and greatly improved the final product. Fund-
ing for this work came from the California Department of Parks and
Recreation, a California Sea Grant, and a National Science Founda-
tion Graduate Research Fellowship. Any mistakes in fact or judg-
ment are the sole responsibility of the authors.

References

Aldenderfer, M., 2006. Costly signaling, the sexual division of labor, and animal
domestication in the Andean highlands. In: Kennett, D.J., Winterhalder, B. (Eds.),
Behavioral Ecology and the Transition to Agriculture. University of California
Press, Berkeley, pp. 167–196.

Bayham, F.E., 1979. Factors influencing the Archaic pattern of animal exploitation.
Kiva 44, 219–235.

Bennyhoff, J.A., 1978. Chronology Charts. In: Elsasser, A.B., Development of Regional
Prehistoric Cultures. In: Heizer, R.F. (Ed.), California Handbook of North
American Indians, vol. 8, W.G. Sturtevant, general ed. Smithsonian Institution,
Washington DC, pp. 37–57.

Bennyhoff, J.A., Hughes, R.E., 1987. Shell Bead and Ornament Exchange Networks
Between California and the Western Great Basin. American Museum of Natural
History Anthropological Papers 64(2).

Bettinger, R.L., 1991. Hunter–Gatherers: Archaeological and Evolutionary Theory.
Plenum Press, New York.

Bettinger, R.L., 2006. Agriculture, archaeology, and human behavioral ecology. In:
Kennett, D.J., Winterhalder, B. (Eds.), Behavioral Ecology and the Transition to
Agriculture. University of California Press, Berkeley, pp. 304–322.

Bettinger, R.L., Mahli, R., McCarthy, H., 1997. Central place models of acorn and
mussel processing. Journal of Archaeological Science 24, 887–899.

Bettinger, R.L., Winterhalder, B., McElreath, R., 2006. A simple model of
technological intensification. Journal of Archaeological Science 33, 538–545.

Binford, L., 1978. Nunamuit Ethnoarchaeology. Academic Press, New York.
Binford, L., 1980. Willow’s smoke and dog’s tails: hunter–gatherer settlement

systems and archaeological site formation. American Antiquity 45, 4–20.
Binford, L., 1983. In Pursuit of the Past: Decoding the Archaeological Record.

Thames and Hudson, New York.
Binford, L., 1984. Faunal Remains from Klasies River Mouth. Academic Press, New

York.
Bird, D.W., O’Connell, J.F., 2006. Behavioral ecology and archaeology. Journal of

Archaeological Research 14, 143–188.
Bird, D.W., Bliege Bird, R., Codding, B.F., 2009. In pursuit of mobile prey: Martu

foraging and archaeofaunal interpretation. American Antiquity 74, 3–29.
Bliege Bird, R., 2007. Fishing and the sexual division of labor among the Meriam.

American Anthropologist 109, 442–451.
Bliege Bird, R., Smith, E.A., 2005. Signaling theory, strategic interaction, and

symbolic capital. Current Anthropology 46, 221–248.
Bliege Bird, R., Codding, B.F., Bird, D.W., 2009. What Explains Differences in Men’s

and Women’s Production? Determinants of Gendered Foraging Inequalities
among Martu. Human Nature 20, 105–129.

Bliege Bird, R., Smith, E.A., Bird, D.W., 2001. The hunting handicap: costly signaling
in male foraging strategies. Behavioral Ecology and Sociobiology 50, 9–19.

Breschini, G.S., Haversat, T., 1988. Archaeological Excavations at CA-SLO-7 and CA-
SLO-8, Diablo Canyon, San Luis Obispo County, California. Coyote Press Archives
of California Prehistory, No. 28.

Broughton, J.M., 1994. Declines in foraging efficiency during the late Holocene: the
archaeological mammal evidence from San Francisco Bay, California. Journal of
Anthropological Archaeology 13, 371–401.

Broughton, J.M., 1997. Widening diet breadth, declining foraging efficiency, and
prehistoric harvest pressure: icthyofaunal evidence from the Emeryville
Shellmound. Antiquity 71, 845–862.

Broughton, J.M., 1999. Resource Depression and Intensification During the Late
Holocene, San Francisco Bay: Evidence from the Emeryville Shellmound
Vertebrate Fauna. University of California Anthropological Records 32, Berkeley.

Broughton, J.M., 2002. Prey spatial structure and behavior affect archaeological tests
of optimal foraging models: examples from the Emeryville Shellmound
vertebrate fauna. World Archaeology 34, 60–83.

Broughton, J.M., Bayham, F.E., 2003. Showing off, foraging models and the
ascendance of large game hunting in the California Middle Archaic. American
Antiquity 68, 783–789.

Broughton, J.M., Grayson, D.K., 1993. Diet breadth, adaptive change, and the white
mountain faunas. Journal of Archaeological Science 20, 331–336.

Broughton, J.M., Byers, D.A., Bryson, R.A., Eckerle, W., Madsen, D.B., 2008. Did
climatic seasonality control late quaternary artiodactyl densities in western
North America? Quaternary Science Reviews 27, 1916–1937.

Brunelle, A., Anderson, R.S., 2003. Sedimentary charcoal as an indicator of late-
Holocene drought in the Sierra Nevada, California, and its relevance to the
future. The Holocene 13, 21–28.

Butler, V.L., 2000. Resource depression on the northwest coast of North America.
Antiquity 74, 649–661.

Butler, V.L., Campbell, S.K., 2004. Resource intensification and resource depression
in the Pacific northwest of North America: a zooarchaeological review. Journal
of World Prehistory 18, 327–405.

Byers, D.A., Broughton, J.M., 2004. Holocene environmental change, artiodactyl
abundances, and human hunting strategies in the Great Basin. American
Antiquity 69, 235–256.

Byers, D.A., Ugan, A., 2005. Should we expect large game specialization in the Late
Pleistocene? An optimal foraging perspective on early Paleoindian diet. Journal
of Archaeological Science 32, 1624–1640.

Byers, D.A., Smith, C.S., Broughton, J.M., 2005. Holocene artiodactyl population
histories and large game hunting in the Wyoming Basin, USA. Journal of
Archaeological Science 32, 125–142.

Cannon, M.D., 2000. Large mammal relative abundance in Pithouse and Pueblo
Period archaeofaunas from southwestern New Mexico: resource depression in
the Mimbres–Mogollon? Journal of Anthropological Archaeology 19, 317–347.

Cannon, M.D., 2001. Archaeofaunal relative abundance, sample size and statistical
methods. Journal of Archaeological Science 28, 185–195.

Cannon, M.D., 2003. A model of central place forager prey choice and an application
to faunal remains from the Mimbres Valley, New Mexico. Journal of
Anthropological Archaeology 22, 1–25.

Cannon, M.D., 2009. When should we expect to see hunting as mating effort?
California Archaeology 1, 79–91.

Charnov, E.L., Orians, G.H., Hyatt, K., 1976. Ecological implications of resource
depression. The American Naturalist 110, 247–259.

Codding, B.F., Jones, T.L., 2006. The Middle Late Transition on the Central California
Coast: Archaeological Salvage at CA-SLO-9, Montaña de Oro State Park, San Luis
Obispo County, California. MS on file at the California Historic Resources
Information System, Central Coast Information Center, University of California
Santa Barbara.

Codding, B.F., Jones, T.L., 2007a. History and behavioral ecology during the middle–
late transition on the central California Coast: findings from the Coon Creek Site,
CA-SLO-9, San Luis Obispo County. Journal of California and Great Basin
Anthropology 27, 23–49.

Codding, B.F., Jones, T.L., 2007b. Man the show-off? or the ascendance of a just-so-
story: a comment on recent applications of costly signaling theory in American
archaeology. American Antiquity 72, 289–316.

Codding, B.F., Barton, A.M., Hill, E.J., Wheeler, E., Stevens, N.E., Jones, T.L., 2009. The
Middle–Late Transition on the Central California Coast: Final Report on Salvage
at CA-SLO-9, Montaña de Oro State Park, San Luis Obispo County, California.
Occasional Papers of the San Luis Obispo Archaeological Society, No. 19.

Crawley, M.J., 2007. The R Book. John Wiley and Sons, Hoboken.
Dean, R.M., 2007. Hunting intensification and the Hohokam ‘‘collapse”. Journal of

Anthropological Archaeology 26, 109–132.
Erlandson, J.M., 1994. Early Holocene Hunter-Gatherers of the California Coast.

Plenum Press, New York.
Everitt, B.S., 1977. The Analysis of Contingency Tables. Chapman and Hall, London.
Faraway, J.J., 2006. Extending the Linear Model with R: Generalized Linear, Mixed

Effects and Nonparametric Regression Models. Chapman and Hall, New York.
Grayson, D.K., 1978. Minimum numbers and sample size in vertebrate faunal

analysis. American Antiquity 43, 53–65.
Grayson, D.K., 1981. The effects of sample size on some derived measures in

vertebrate faunal analysis. Journal of Archaeological Science 8, 77–88.
Grayson, D.K., 1984. Quantitative Zooarchaeology: Topics in the Analysis of

Archaeological Faunas. Academic Press, New York.
Grayson, D.K., 1988. Danger Cave, Last Supper Cave, and Hanging Rock Shelter: the

faunas. Anthropological Papers of the American Museum of Natural History,
New York 66, 1–130.

Grayson, D.K., 1989. Bone transport, bone destruction, and reverse utility curves.
Journal of Archaeological Science 16, 643–652.

Grayson, D.K., 2001. The archaeological record of human impacts on animal
populations. Journal of World Prehistory 15, 1–68.

Grayson, D.K., Cannon, M.D., 1999. Paleoecology and foraging theory in the great
basin. In: Beck, C. (Ed.), Models for the Millennium: Great Basin Anthropology
Today. University of Utah Press, Salt Lake City, pp. 141–151.

Grayson, D.K., Delpech, F., 1998. Changing diet breadth in the early upper
Palaeolithic of southwestern France. Journal of Archaeological Science 25,
1119–1129.

Grayson, D.K., Delpech, F., 2003. Ungulates and the Middle-to-Upper Paleolithic
Transition at Grotte XVI (Dordogne, France). Journal of Archaeological Science
30, 1633–1648.

Grayson, D.K., Delpech, F., Rigaud, J., Simek, J.F., 2001. Explaining the development
of dietary dominance by a single ungulate taxon at Grotte XVI, Dordogne,
France. Journal of Archaeological Science 28, 115–125.

Graumlich, L.J., 1993. A 1000-year tree ring record of temperature and precipitation
in the Sierra Nevada. Quaternary Research 39, 249–255.

Greenwood, R.S., 1972. 9000 Years of Prehistory at Diablo Canyon, San Luis Obispo
County, California. Occasional Papers of the San Luis Obispo Archaeological
Society, No. 7.

Griffiths, D., 1975. Prey availability and the food of predators. Ecology 56, 1209–
1214.

Hawkes, K., 1991. Showing off: tests of an hypothesis about men’s foraging goals.
Ethology and Sociobiology 12, 29–54.

Hawkes, K., 1993. Why hunter–gathers work: an ancient version of the problem of
public goods. Current Anthropology 34, 341–361.

B.F. Codding et al. / Journal of Anthropological Archaeology 29 (2010) 47–61 59



Hawkes, K., Bliege Bird, R., 2002. Showing off, handicap signaling, and the evolution
of men’s work. Evolutionary Anthropology 11, 58–67.

Hildebrandt, W.R., Carpenter, K., 2006. California animals. In: Stanford, D., Smith,
B.D., Ubelaker, D.H., Szathmáry, E.J.E. (Eds.), Handbook of North American
Indians, Origins, and Population, vol 3. Smithsonian Institution, Washington,
DC, pp. 284–291.

Hildebrandt, W.R., McGuire, K.R., 2002. The ascendance of hunting during the
California Middle Archaic: an evolutionary perspective. American Antiquity 67,
231–256.

Hildebrandt, W.R., McGuire, K.R., 2003. Large game hunting, gender-differentiated
work organization and the role of evolutionary ecology in California and Great
Basin prehistory. American Antiquity 68, 790–792.

Hildebrandt, W.R., McGuire, K.R., Rosenthal, J., 2010. Human behavioral ecology and
historical contingency: A comment on the Diablo Canyon archaeological record.
American Antiquity, in press.

Hockett, B., 2005. Middle and late Holocene hunting in the great basin: a critical
review of the debate and future prospects. American Antiquity 70, 713–731.

Hope, A.C.A., 1968. A simplified Monte Carlo significance test procedure. Journal of
the Royal Statistical Society, Series B 30, 582–598.

Janetski, J., 1997. Fremont hunting and resource intensification in the eastern Great
Basin. Journal of Archaeological Science 24, 1075–1089.

Jochim, M.A., 1976. Hunter–Gatherer Subsistence and Settlement: A Predictive
Model. Academic Press, New York.

Jochim, M.A., 1998. A Hunter–Gatherer Landscape: Southwest Germany in the Late
Paleolithic and Mesolithic. Plenum Press, New York.

Jones, E.L., 2004. Dietary evenness, prey choice, and human–environment
interactions. Journal of Archaeological Science 31, 307–317.

Jones, T.L., 1993. Big sur: a keystone in Central California Culture History. Pacific
Coast Archaeological Society Quarterly 29, 1–78.

Jones, T.L., 1996. Mortars, pestles, and division of labor in prehistoric California: a
view from big sur. American Antiquity 61, 243–264.

Jones, T.L., 2003. Prehistoric Human Ecology of the Big Sur Coast, California.
Berkeley: Contributions of the University of California Archaeological Research
Facility No. 61.

Jones, T.L., Codding, B.F., 2010. Historical Contingencies, Issues of scale and flightless
fantasies: A response to Hildebrandt et al. American Antiquity, in press.

Jones, T.L., Ferneau, J., 2002. De-intensification along the Central Coast. In:
Erlandson, J.M., Jones, T.L. (Eds.), Catalysts to Complexity: Late Holocene
Societies of the California Coast. Cotsen Institute of Archaeology, University of
California, Los Angeles, pp. 204–231.

Jones, T.L., Kennett, D.J., 1999. Late Holocene sea temperatures along the Central
California Coast. Quaternary Research 51, 74–82.

Jones, T.L., Schwitalla, A., 2008. Archaeological Perspectives on the Effects of
Medieval Drought in Prehistoric California. In: Proceedings of the 22nd Pacific
Climate Workshop. Quaternary International 188, 41–58.

Jones, T.L., Waugh, G., 1997. Climatic consequences or population pragmatism?
A middle Holocene prehistory of the central California Coast. In: Erlandson,
J., Glassow, M.A. (Eds.), The middle Holocene Along the California Coast.
Cotsen Institute of Archaeology, University of California, Los Angeles, pp.
111–128.

Jones, T.L., Garza, S., Porcasi, J.F., Gaeta, J., 2009. Another trans-Holocene sequence
from Diablo Canyon: new faunal and radiocarbon findings from CA-SLO-585,
San Luis Obispo County, California. Journal of California and Great Basin
Anthropology 29, 19–31.

Jones, T.L., Stevens, N.E., Jones, D.A., Fitzgerald, R.T., Hylkema, M.G., 2007. The
Central Coast: a mid-latitude milieu. In: Jones, T.L., Klar, K.A. (Eds.), California
Prehistory: Colonization Culture and Complexity. Altamira Press, Walnut Creek,
California, pp. 125–146.

Jones, T.L., Brown, G.M., Raab, L.M., McVickar, J.L., Spaulding, W.G., Kennett, D.J.,
York, A., Walker, P.L., 1999. Environmental imperatives reconsidered,
demographic crises in Western North America during the medieval climatic
anomaly. Current Anthropology 40, 137–170.

Jones, T.L., Fitzgerald, R.T., Kennett, D.J., Miksicek, C.H., Fagan, J.L., Sharp, J.,
Erlandson, J.M., 2002. The Cross Creek Site, CA-SLO-1797 and its implications
for new world colonization. American Antiquity 67, 213–230.

Jones, T.L., Porcasi, J.F., Gaeta, J., Codding, B.F., 2008a. The Diablo Canyon fauna: a
coarse-grained record of trans-Holocene foraging from the central California
mainland coast. American Antiquity 73, 289–316.

Jones, T.L., Kennett, D.J., Kennett, J.P., Codding, B.F., 2008b. Seasonal stability in late
Holocene shellfish harvesting on the central California coast. Journal of
Archaeological Science 35, 2286–2294.

Jones, T.L., Porcasi, J.F., Erlandson, J.M., Dallas Jr., H., Wake, T.A., Schwaderer, R.,
2008c. The protracted Holocene extinction of California‘s flightless sea duck,
Chendytes lawi and its implications for the pleistocene overkill hypothesis.
Proceedings of the National Academy of Science 105, 4105–4108.

Kennett, D.J., 2005. The Island Chumash: Behavioral Ecology of a Maritime Society.
University of California Press, Berkeley.

Kennett, D.J., Bottman, T.C., 2006. Oxygen isotope analysis of California Mussel,
Mytilus californianus shells from CA-SLO-9. In: Codding, B.F., Jones, T.L. (Eds.).
The Middle Late Transition on the central California coast: Archaeological
Salvage at CA-SLO-9, Montaña de Oro State Park, San Luis Obispo County,
California. MS on file at the California Historic Resources Information System,
Central Coast Information Center, University of California, Santa Barbara, pp.
125–136.

Kennett, D.J., Kennett, J.P., 2000. Competitive and cooperative responses to climate
instability in Coastal Southern California. American Antiquity 65, 379–395.

Kennett, D.J., Kennett, J.P., Erlandson, J.M., Cannariato, K.G., 2007. Human responses
to middle holocene climate change on California’s Channel Islands. Quaternary
Science Reviews 26, 351–367.

Kieschnick, R., McCullough, B.D., 2003. Regression analysis of variates observed
on, (0, 1): percentages, proportions and fractions. Statistical Modeling 3,
193–213.

King, C.D., 1982. The Evolution of Chumash Society: A Comparative Study of
Artifacts Used in Social System Maintenance in the Santa Barbara Channel
Region before A.D. 1804, Unpublished Ph.D. dissertation, University of
California, Davis.

King, C.D., 1990. The Evolution of Chumash Society: A Comparative Study of
Artifacts Used in Social System Maintenance in the Santa Barbara Channel
Region Before A.D. 1804. Garland Publishing, New York.

Kintigh, K., 2009. Tools for Quantitative Archaeology. Electronic document. <http://
tfqa.com/doc/index.html> (accessed 28.02.2009).

Klein, R.G., 1975. Middle stone age man–animal relationships in Southern Africa:
evidence from Die Kelders and Klasies River Mouth. Science 190, 265–267.

Klein, R.G., 1976. The mammalian fauna of the Klasies River Mouth Sites, Southern
Cape Province, South Africa. The South African Archaeological Bulletin 31, 75–
98.

Klein, R.G., 1982. Age, mortality profiles as a means of distinguishing hunted
species from scavenged ones in stone age archaeological sites. Paleobiology
8, 151–158.

Klein, R.G., Cruz-Uribe, K., 1984. The Analysis of Animal Bones from Archaeological
Sites. University of Chicago Press.

Klein, R.G., Avery, G., Cruz-Uribe, K., Steele, T.E., 2007. The mammalian fauna
associated with an archaic hominin skullcap and later Acheulean artifacts at
Elandsfontein, Western Cape Province, South Africa. Journal of Human
Evolution 52, 164–186.

Kuhn, S.L., Stiner, M.C., 2006. What’s a mother to do? The division of labor among
Neanderthals and modern humans in Eurasia. Current Anthropology 47, 953–
980.

Lawrence, R.K., Demarais, S., Relyea, R.A., Haskell, S.P., Ballard, W.B., Clark, T.L., 2004.
Desert mule deer survival in Southwest Texas. Journal of Wildlife Management
68, 561–569.

Lebow, C.G., McKim, R.L., Harro, D.R., Munns, A.M., Denardo, C., 2007. Littoral
Adaptations throughout the Holocene: Archaeological Investigations at the
Honda Beach Site, CA-SBA-530. MS on file at the California Historic Resources
Information System, Central Coast Information Center, University of California,
Santa Barbara.

Lebow, C.G., McKim, R.L., Harro, D.R., Hodges, C.M., Munns, A.M., 2005. Large Game
Hunting and Other Paludal Adaptations at Barka Slough: Excavations at CA-
SBA-1010, Vandenberg Air Force Base, Santa Barbara County, California. MS on
file at the California Historic Resources Information System, Central Coast
Information Center, University of California, Santa Barbara.

Lee, R.B., 1968. What hunters do for a living: or, how to make out on scarce
resources. In: Lee, R.B., Devore, I. (Eds.), Man the Hunter. Aldine De Gruyter,
New York, pp. 30–55.

Lillard, J.B., Heizer, R.F., Fenenga, F., 1939. An Introduction to the Archaeology of
Central California. Department of Anthropology Bulletin 2, Sacramento Junior
College, Sacramento.

Lupo, K.D., 2001. Archaeological skeletal part profiles and differential transport: an
ethnoarchaeological example from Hadza bone assemblages. Journal of
Anthropological Archaeology 20, 361–378.

Lupo, K.D., 2006. What explains the carcass field processing and transport decisions
of contemporary hunter–gatherers? Measures of economic anatomy and
zooarchaeological skeletal part representation. Journal of Archaeological
Method and Theory 13, 19–66.

Lupo, K.D., 2007. Evolutionary foraging models in zooarchaeological analysis: recent
applications and future challenges. Journal of Archaeological Research 15, 143–
189.

Lupo, K.D., Schmitt, D.N., 2002. Upper Paleolithic net-hunting, small prey
exploitation and women’s work effort: a view from the ethnographic and
ethnoarchaeological record of the Congo Basin. Journal of Archaeological
Method and Theory 9, 147–179.

Lupo, K.D., Schmitt, D.N., 2005. Small prey hunting technology and
zooarchaeological measures of taxonomic diversity and abundance:
Ethnoarchaeological evidence from Central African forest foragers. Journal of
Anthropological Archaeology 24, 335–353.

Lyman, R.L., 1984. Bone density and differential survivorship of fossil classes.
Journal of Anthropological Archaeology 3, 259–299.

Lyman, R.L., 1985. Bone frequencies: differential transport, in situ destruction, and
the MGUI. Journal of Archaeological Science 12, 221–236.

Lyman, R.L., 1994. Vertebrate Taphonomy. Cambridge University Press.
Lyman, R.L., 2003. The influence of time averaging and space averaging on the

application of foraging theory in zooarchaeology. Journal of Archaeological
Science 30, 595–610.

Lyman, R.L., 2008. Quantitative Paleozoology. Cambridge University Press.
MacArthur, R.H., Pianka, E.R., 1966. On optimal use of a pathcy environment. The

American Naturalist 100, 603–609.
Mackie, R.J., Hamlin, K.L., Pac, D.F., 1982. Mule Deer, Odocoileus hemionus. In:

Chapman, J.A., Feldhamer, G.A. (Eds.), Wild Mammals of North America: Biology
Management and Economics. Johns Hopkins University Press, Baltimore, pp.
862–877.

Mackie, R.J., Kie, J.G., Pac, D.F., Hamlin, K.L., 2003. Mule Deer, Odocoileus hemionus.
In: Feldhamer, G.A., Thompson, B.C., Chapman, J.A. (Eds.), Wild Mammals of

60 B.F. Codding et al. / Journal of Anthropological Archaeology 29 (2010) 47–61



North America: Biology, Management, and Economics, second ed. Johns
Hopkins University Press, Baltimore, pp. 889–905.

Madsen, D.B., 1993. Testing diet breadth models: examining adaptive change in the
Late Prehistoric Great Basin. Journal of Archaeological Science 20, 321–329.

Magurran, A.E., 1988. Ecological Diversity and its Measurement. Princeton
University Press, Princeton.

Magurran, A.E., 2004. Measuring Biological Diversity. Blackwell Publishing, Oxford.
McGuire, K., Hildebrandt, W.R., 1994. The possibilities of women and men: gender

and the California milling stone horizon. Journal of California and Great Basin
Anthropology 16, 41–59.

McGuire, K., Hildebrandt, W.R., 2005. Re-thinking Great Basin foragers: prestige
hunting and costly signaling during the Middle Archaic period. American
Antiquity 70, 695–712.

McGuire, K., Hildebrandt, W.R., Carpenter, K.L., 2007. Costly signaling and the
ascendance of no-can-do archaeology: a reply to Codding and Jones. American
Antiquity 72, 358–365.

Menard, S., 2002. Applied Logistic Regression Analysis, second ed. Sage Publications,
Thousand Oaks.

Metcalfe, D., Barlow, K.R., 1992. A model for exploring the optimal trade-off
between field processing and transport. American Anthropologist 94, 340–356.

Metcalfe, D., Jones, K.T., 1988. A reconsideration of animal body-part utility indices.
American Antiquity 53, 486–504.

Moratto, M.J., 1984. California Archaeology. Academic Press, Orlando.
Mills, W.W., Rondeau, M.F., Jones, T.L., 2005. A fluted point from Nipomo, San Luis

Obispo County, California. Journal of California and Great Basin Anthropology
25, 68–74.

O’Connell, J.F., Hawkes, K., 1984. Food choice and foraging sites among the
Alyawara. Journal of Anthropological Research 40, 504–535.

O’Connell, J.F., Marshall, B., 1989. Analysis of kangaroo body part transport among
the Alyawara of Central Australia. Journal of Archaeological Science 16, 393–
405.

O’Connell, J.F., Hawkes, K., Blurton Jones, N., 1988. Hadza hunting, butchering, and
bone transport and their archaeological implications. Journal of Anthropological
Research 44, 113–161.

Orians, G.H., Pearson, N.E., 1979. On the theory of central place foraging. In: Horn,
D.J., Stairs, G.R., Mitchell, R.D. (Eds.), Analysis of Ecological Systems. State
University Press, Columbus, pp. 155–177.

Orton, C., 2005. Sampling in Archaeology. Cambridge University Press, Cambridge.
Pilling, A.R., 1951. The surface archaeology of the Pecho Coast, San Luis Obispo

County, California. The Masterkey 25, 196–200.
Pilloud, M.A., 2006. The impact of the medieval climatic anomaly in prehistoric

California: a case study from Canyon Oaks, CA-ALA-613/H. Journal of California
and Great Basin Anthropology 26, 179–191.

Plourde, A.M., 2008. The origins of prestige goods as honest signals of skill and
knowledge. Human Nature 19, 374–388.

Potter, J.M., 1997. Communal ritual and faunal remains: an example from the
dolores Anasazi. Journal of Field Archaeology 24, 353–364.

Potter, J.M., 2000. Pots, parties and politics: communal feasting in the American
Southwest. American Antiquity 65, 471–492.

R Development Core Team, 2009. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.

Raab, M.L., Larson, D.O., 1997. Medieval climatic anomaly and punctuated cultural
evolution in coastal southern California. American Antiquity 62, 319–336.

Reitz, E.J., Wing, E.S., 2008. Zooarchaeology, second ed. Cambridge University Press,
Cambridge.

Rogers, D.B., 1929. Prehistoric Man of the Santa Barbara Coast, California. Santa
Barbara Museum of Natural History, Special Publications No. 1.

SAS Institute Inc., 2007. JMP, Version 7. SAS Institute Inc., Cary, NC, 1989–2007.
Schoener, T.W., 1971. Theory of feeding strategies. Annual Review of Ecology and

Systematics 2, 369–404.
Shennan, S., 2008. Evolution in archaeology. Annual Review of Anthropology 37,

75–91.
Sih, A., Christensen, B., 2001. Optimal diet theory: when does it work, and when

does it fail? Animal Behaviour 61, 379–390.
Simms, S., 1985. Acquisition costs and nutritional data on great basin resources.

Journal of California and Great Basin Anthropology 7, 117–125.
Smith, E.A., 1991. Inujjuamiut Foraging Strategies: Evolutionary Ecology of an Arctic

Hunting Economy. Aldine de Gruyter, New York.
Smith, E.A., 2004. Why do good hunters have higher reproductive success? Human

Nature 15, 343–364.

Smith, E.A., Bliege Bird, R., Bird, D.W., 2000. Turtle hunting and tombstone opening:
public generosity as costly signaling. Evolution and Human Behavior 21, 245–
261.

Smith, E.A., Winterhalder, B., 1992. Natural selection and decision-making:
some fundamental principles. In: Smith, E.A., Winterhalder, B. (Eds.),
Evolutionary Ecology and Human Behavior. Aldine de Gruyter, New York,
pp. 25–60.

Stevens, N.E., Codding, B.F., 2009. Inferring the function of flaked stone projectile
points on California’s Central Coast. California Archaeology 1, 7–27.

Stevens, N.E., Fitzgerald, R.T., Farrell, N., Giambastiani, M.A., Farquhar, J.M., Tinsley,
D., 2004. Archaeological Test Excavations at Santa Ysabel Ranch, Paso Robles,
San Luis Obispo County, California. MS on file at the California Historic
Resources Information System, Central Coast Information Center, University of
California, Santa Barbara.

Stevens, D.W., Krebs, J.R., 1986. Foraging Theory. Princeton University Press.
Stine, S., 1994. Extreme and persistent drought in California and Patagonia during

medieval time. Nature 369, 546–549.
Stine, S., 2000. On the medieval climatic anomaly. Current Anthropology 41, 627–

628.
Stiner, M.C., 2001. Thirty years on the ‘‘broad spectrum revolution” and

paleolithic demography. Proceedings of the National Academy of Sciences
98, 6993–6996.

Stiner, M.C., 2006. Middle paleolithic subsistence ecology in the mediterranean
region. In: Hovers, E., Kuhn, S.L. (Eds.), Transitions Before the Transition:
Evolution and Stability in the Middle Paleolithic and Middle Stone Age.
Springer, New York, pp. 213–231.

Stiner, M.C., Munro, N.D., 2002. Approaches to prehistoric diet breadth,
demography, and prey ranking systems in time and space. Journal of
Archaeological Method and Theory 9, 181–213.

Stiner, M.C., Munro, N.D., Survoell, T.A., 2000. The tortoise and the hare: small-game
use, the broad-spectrum revolution, and paleolithic demography. Current
Anthropology 41, 39–73.

Stiner, M.C., Beaver, J.E., Munro, N.D., Surovell, T.A., 2008. Modeling paleolithic
predator–prey dynamics and the effects of hunting pressure on prey ‘choice’. In:
Bocquet-Appel, J.P. (Ed.), Recent Advances in Palaeodemography. Springer, New
York, pp. 143–178.

Stuiver, M., Reimer, P.J., Reimer, R.W., 2005. CALIB 5.0., Electronic document,
<http://calib.qub.ac.uk/calib/> (accessed December, 2008).

Stuiver, M., Reimer, P.J., 1993. Extended 14C database and revised CALIB
radiocarbon calibration program. Radiocarbon 35, 215–230.

Stutz, A.J., Munro, N.D., Bar-Oz, G., 2009. Increasing the resolution of the broad
spectrum revolution in the Southern Levantine Epipaleolithic (19–12 ka).
Journal of Human Evolution 57, 294–306.

Ugan, A., 2005. Does size matter? Body size, mass collecting, and their implications
for understanding prehistoric foraging behavior. American Antiquity 70, 75–89.

Wiess, E., 2002. Drought-related changes in two hunter–gatherer California
populations. Quaternary Research 58, 393–396.

Whitaker, A., 2008. The Role of Human Predation in the Structuring of Prey
Populations in Prehistoric Northwestern California. Unpublished PhD
Dissertation, University of California, Davis.

Whitaker, A., 2009. Are deer really susceptible to resource depression? Modeling
Deer (Odocoileus hemionus) populations under human predation. California
Archaeology 1, 93–108.

Wilson, D.S., 1976. Deducing the energy available in the environment: an
application of optimal foraging theory. Biotropica 8, 86–103.

Winterhalder, B., 1981. Foraging strategies in the boreal forest: an analysis of cree
hunting and gathering. In: Winterhalder, B., Smith, E.A. (Eds.), Hunter–Gatherer
Foraging Strategies: Ethnographic and Archaeological Analyses. University of
Chicago Press, pp. 66–98.

Winterhalder, B., Smith, E.A., 2000. Analyzing adaptive strategies: human
behavioral ecology at twenty-five. Evolutionary Anthropology 9, 51–72.

Winterhalder, B., Bettinger, R.L., 2010. Nutritional and Social Benefits of Foraging in
Ancient California. California Archaeology, in press.

Winterhalder, B., Lu, F., 1997. A forager-resource population ecology model and
implications for indigenous conservation. Conservation Biology 11, 1354–1364.

Zahavi, Amotz., 1975. Mate selection – A selection for a handicap. Journal of
Theoretical Biology 53, 205–214.

Zeanah, D.W., 2004. Sexual division of labor and central place foraging: a model for
the Carson Desert of Western Nevada. Journal of Anthropological Archaeology
23, 1–32.

B.F. Codding et al. / Journal of Anthropological Archaeology 29 (2010) 47–61 61


