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ABSTRACT Vertebrates harbor trillions of microorganisms in the gut, collectively
termed the gut microbiota, which affect a wide range of host functions. Recent ex-
periments in lab-reared vertebrates have shown that changes in environmental tem-
perature can induce shifts in the gut microbiota, and in some cases these shifts
have been shown to affect host thermal physiology. However, there is a lack of in-
formation about the effects of temperature on the gut microbiota of wild-caught
vertebrates. Moreover, in ectotherms, which are particularly vulnerable to changing
temperature regimens, the extent to which microbiota composition is shaped by
temperature and associated with host thermal tolerance has not been investigated.
To address these issues, we monitored the gut microbiota composition of wild-
caught western fence lizards (Sceloporus occidentalis) experimentally exposed to a
cool-to-warm temperature transition. Comparing experimentally exposed and control
lizards indicated that warm temperatures altered and destabilized the composition
of the S. occidentalis gut microbiota. Warming drove a significant reduction in the
relative abundances of a clade of Firmicutes, a significant increase in the rate of
compositional turnover in the gut microbiota within individual lizards, and increases
in the abundances of bacteria from predicted pathogenic clades. In addition, the
composition of the microbiota was significantly associated with the thermal toler-
ance of lizards measured at the end of the experiment. These results suggest that
temperature can alter the lizard gut microbiota, with potential implications for the
physiological performance and fitness of natural populations.

IMPORTANCE Gut microbial communities affect their animal hosts in numerous
ways, motivating investigations of the factors that shape the gut microbiota and the
consequences of gut microbiota variation for host traits. In this study, we tested the
effects of increases in environmental temperatures on the gut microbiota of fence
lizards, a vertebrate ectotherm threatened by warming climates. By monitoring liz-
ards and their gut microbes during an experimental temperature treatment, we
showed that the warming altered and destabilized the lizard gut microbiota.
Moreover, measuring thermal performance of lizard hosts at the end of the ex-
periment indicated that the composition of the gut microbiota was associated
with host thermal tolerance. These results indicate that warming temperatures
can alter the gut microbiota of vertebrate ectotherms and suggest relationships
between variation in the gut microbiota and the thermal physiology of natural
host populations.
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The gastrointestinal tracts of animals are colonized by diverse assemblages of
microorganisms that can have profound effects on host phenotypes (1), demanding

investigation of the causes and consequences of variation in the animal gut microbiota.
There is mounting evidence that environmental temperature shapes the composition
of gut microbial communities in many animal taxa, including invertebrates and verte-
brates (2–6). Moreover, recent studies have provided evidence that temperature-
induced changes in the microbiota can have cascading consequences for host pheno-
types relevant to thermal tolerance (7–10). For example, transplantation of the gut
microbiota from mice acclimated to cool conditions into germfree mice caused remod-
eling of gut morphology in a manner consistent with greater cold tolerance in recipient
hosts (10).

Despite the progress that has been made, understanding of how temperature
affects the animal gut microbiota remains limited. This is particularly true for reptiles,
despite the fact that rising global temperatures are expected to have extreme negative
effects on biodiversity in this vertebrate clade (11). Prior studies of lizards have shown
that temperature increases can affect the composition of the gut microbiota (12);
however, these studies relied on hosts descended from captive-bred populations, and
hosts were sampled at only one or two time points. The responses of the gut
microbiotas of wild-caught reptiles to temperature variation remain unclear, and the
temporal dynamics of gut microbiota responses to temperature in reptiles have not
been investigated. Moreover, the contribution of gut microbiota variation to host
thermal tolerance in reptiles is unknown.

To address these issues, we conducted an experiment to test the effects of envi-
ronmental temperature on the gut microbiotas of wild-caught western fence lizards
(Sceloporus occidentalis). We acclimated animals to two different temperatures and
measured the progression of changes in gut microbiota. Combining gut microbiota
data with physiological measurements of host heat tolerances allowed us to test for
effects of temperature on gut microbiota composition in S. occidentalis and for asso-
ciations between aspects of gut community composition and individual resistance to
heat. Results suggest that changing thermal conditions can significantly impact lizard
gut microbiota and are consistent with a role of the gut microbiota in shaping lizard
thermal physiology.

RESULTS

We tracked the gut microbiota composition of 25 wild-caught lizards in two
experimental groups: a control group that experienced 25°C for 16 days and a treat-
ment group that experienced 25°C for 7 days and 35°C for 10 days (see Table S1 in the
supplemental material). To this end, we generated 5,841,604 16S rRNA gene reads
across 89 fecal samples collected throughout the experiment, yielding 2,069,546 high-
quality reads after quality filtering, trimming, and deblur filtering (interquartile range of
reads per sample, 15,242 to 28,790). The final data set included 9,037 amplicon
sequence variants (ASVs) in total. To include all samples in downstream analyses,
rarefaction was performed, yielding an even depth of 7,500 reads per sample. Rarefac-
tion curves supported the idea that this sequencing depth was sufficient to enumerate
the majority of ASVs present at appreciable abundances in the fecal samples (Fig. S1).
Taxonomy assignments of the ASVs are presented in Table S2. A diagram displaying the
experimental design, sampling strategy, and relative abundances of bacterial phyla
within each sample is presented in Fig. S2.

Visualizing the dissimilarities among all samples through principal-coordinate anal-
yses indicated that lizard hosts in the treatment group displayed a compositional shift
in their gut microbiotas following movement from 25°C to 35°C, a shift not observed in
control lizards kept at 25°C (Fig. 1A and B). To test the significance of the compositional
shift, we compared treated and control lizards over time on the first four principal
coordinates. These analyses show that the gut microbiotas of treatment lizards dis-
played a positive association between the second principal component (PC2) and time
(P value for nonzero slope � 0.029, df � 23, R2 � 0.0759), whereas the gut microbiotas
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of control lizards displayed no temporal relationship with PC2 (P value for nonzero
slope � 0.69, df � 23, R2 � 0.0002) (Fig. 2A). Linear mixed-effects modeling and likeli-
hood ratio tests further supported this finding, indicating that PC2 values for each
sample were better explained by a model containing “treatment group,” “host individ-
ual,” “day,” and “sex” than a model containing only “host individual,” “day,” and “sex”
(�2 � 8.1582, P � 0.01692) (see the supplemental material). In contrast, these two
nested models did not significantly differ in their abilities to explain PC1, PC3, or PC4
values (see the supplemental material).

An effect of treatment at 35°C on gut microbiota composition was further supported
by analysis of variance using distance matrices (i.e., adonis2), which indicated a signif-
icant effect of an interaction between “treatment” and “day of experiment” on beta
diversity among microbiota profiles recovered from fecal samples (F � 1.477, df � 1,
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FIG 1 Exposure to 35°C induces compositional shifts in the gut microbiota not seen at 25°C. Plots display the first
two principal coordinates of Bray-Curtis dissimilarities among samples collected from control lizards (A) and treated
lizards (B). Each point represents the gut microbiota of a lizard measured in a single fecal sample; colors indicate
collection before (blue) or after (red) treatment. Blue and red polygons denote regions containing samples
collected before or after the treatment day, respectively. Note that the samples from heat-treated lizards occupy
a region of compositional space not occupied by lizards before heat treatment (B) and that this effect is not seen
in the control group (A).
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FIG 2 A clade within the Firmicutes displayed reduced relative abundance after warming. (A) Regression of PC2 of Bray-Curtis dissimilarities
against time for treated (red) and control (blue) lizards. Shaded regions indicate 95% confidence bands. ns, P � 0.05; *, P � 0.05. (B) Phylogeny
of all bacterial ASVs detected across all lizard samples analyzed. The region highlighted in red corresponds to a clade within the Firmicutes
identified by Phylofactor analysis that displayed significantly reduced mean relative abundance within individual lizards following warming
relative to the same lizards sampled before warming. Labeled phylogeny in Newick format is presented in Data File S2. (C) Isometric log-ratio
balance of the clade shown in panel B within treated individuals sampled before warming (left) and after warming (right). ***, P � 0.001.
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P � 0.028; see the supplemental material). Variance partitioning analyses further indi-
cated that “treatment” explained the second-highest proportion of variation in beta
diversity of all metadata variables, with “host individual” explaining the most variation
(see the supplemental material). Phylofactor analyses of isometric log-ratio balances
comparing the gut microbiotas of treatment lizards before and after treatment at 35°C
showed that the shift in gut microbiota composition was underlain by a reduction in
the relative abundances of a clade of Firmicutes (Fig. 2B and C) (F � 8.568, P � 0.00083).
The phylogeny underlying Phylofactor analyses is presented in Data File S2 in the
supplemental material.

The microbiotas of treated lizards after transfer to 35°C did not display significantly
different alpha diversity, in terms of observed ASVs, relative to the microbiotas of
control lizards after the treatment began (t test; T � 0.74, df � 23, P � 0.43). In addition,
mixed-effects modeling controlling for sex and individual detected no differences in
observed ASVs between control and treatment groups (see the supplemental material).
Corresponding analyses of Shannon diversity also revealed no differences between
control and treatment groups (see the supplemental material). Similarly, ANCOM
(analysis of composition of microbiomes) revealed no individual ASVs with significantly
different relative abundances between treatment and control lizards after the initiation
of exposure to 35°C (Fig. S3).

To test whether microbiotas of treatment and control groups differed in terms of
bacterial phenotypes, we assigned functional trait categories to bacterial species in our
data set through the BugBase pipeline (13). Analyses of these categories indicated that
35°C drove increases in the relative abundances of bacterial lineages related to obligate
and opportunistic pathogens compared to 25°C (Fig. 3). Taxonomic assignments of
bacterial lineages classified by BugBase as obligate and opportunistic pathogens are
presented in Table S3. Mann-Whitney–Wilcoxon tests indicated a significant difference
between groups (P � 0.039). Analyses of other functional axes revealed no significant
differences between groups, including aerobicity (P � 0.13), anaerobicity (P � 0.55),
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FIG 3 Increased abundances of putative pathogens at 35°C. Plots show the relative abundances of
putatively pathogenic bacterial species within the gut microbiota of lizards after treatment at 35°C
compared to control lizards sampled at the same time period. Putative pathogenic species were inferred
with BugBase (13). *, P � 0.05 (Mann-Whitney–Wilcoxon test).
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oxygen stress tolerance (P � 0.24), formation of biofilms (P � 0.61), Gram-negative
status (P � 0.62), and Gram-positive status (P � 0.62).

Lizards housed at 35°C displayed an elevated rate of compositional turnover in their
gut microbiotas relative to lizards housed at 25°C. Volatility analyses indicated that the
compositional divergence between consecutive samples weighted by the number of
days separating the samples was significantly higher within treatment individuals after
treatment than within control individuals (Fig. 4A) (t test; T � 2.59, df � 7, P � 0.035).
This difference in the within-individual variation in the microbiota between treatment
and control groups is evident when samples are plotted on the first two principal
coordinates of microbiota beta diversity (Fig. 4B and C). In addition, microbiome beta
diversity among samples collected from the same individual was significantly higher on
average in the treatment group than in the control group (nonparametric permutation
test with 1,000 permutations; P � 0.001). Moreover, microbiome beta diversity among
samples within the treatment group was significantly higher than in the control group
(nonparametric permutation test with 1,000 permutations; P � 0.001) (Fig. S4). Feature
volatility analysis revealed that an ASV belonging to the Firmicutes genus Coprobacillus
displayed the highest volatility in relative abundance in the treatment lizards, with a
mean decrease in relative abundance within individuals of 1.7% per day. A complete list
of ASVs identified by feature volatility analyses and the statistics resulting from these
analyses is presented in Table S4.

We also tested whether the critical thermal maximum (CTmax) of lizards was asso-
ciated with the relative abundances of ASVs. CTmax did not differ at the end of the
experiment between control and treated lizards (df � 23, T � 0.86, P � 0.40) (Fig. S5;
Table S5), but CTmax was significantly associated with aspects of gut microbiota
composition. Regressing CTmax against principal coordinates of Bray-Curtis dissimilari-
ties among all samples revealed that PC4 was significantly associated with CTmax

(df � 23, T � �2.31, P � 0.029) (Fig. 5A; also, see the supplemental material). The
significant association between CTmax and PC4 were further supported by likelihood
ratio tests of nested linear models (see the supplemental material). Regression was also
employed to test for associations of CTmax with log-transformed relative abundances of
individual ASVs. These analyses revealed no individual ASVs significantly associated
with CTmax after false-discovery correction (Table S5; Table S6). However, Fisher’s
combined P value test across all ASVs revealed that the distribution of P values across
ASVs differed from the null expectation (P � 0.043), although this result should be
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FIG 4 Elevated compositional turnover in the gut microbiota at 35°C. (A) Mean gut microbiota turnover per day between consecutive samples
collected from the same individuals after the initiation of heat exposure on day 9 in control lizards (left) and warmed lizards (right). Microbiota
turnover between consecutive samples was calculated based on Bray-Curtis dissimilarities. *, P � 0.05 (t test). Plots display the first two principal
coordinates of Bray-Curtis dissimilarities among samples collected from control lizards (B) and treated lizards (C). Each color represents an individual
lizard. On average, samples in the control group (B) displayed higher compositional similarity than did samples in the treatment group (C) (Fig. S5).
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interpreted with caution, given that relative abundances of ASVs are not independent
due to compositionality. A plot of the distribution of P values for regressions of
individual ASVs against the time to loss of righting response is presented in Fig. 5B, and
a list of these P values is presented in Table S3. The ASV that displayed the strongest
association with CTmax belonged to the genus Anaerotignum (Fig. 5C). This ASV was also
identified as associated with CTmax by selbal analyses (14), which identified balances
(i.e., ratios of ASV relative abundances) that explain variation in the response variable
of interest. Additional methods and results from selbal results are presented in the
supplemental material (Fig. S6 and S7; Table S7).

DISCUSSION

Our experiments indicate that temperature has a significant effect on the compo-
sition and dynamics of the gut microbiota of wild-caught lizards. Exposure to 35°C led
to an expansion of variation in microbiota composition among lizard hosts (Fig. 1A and
B) and a decrease in the relative abundances of a large clade of bacterial lineages within
the Firmicutes (Fig. 2B and C). These results mirror previous studies of a diversity of
vertebrate taxa that found effects of temperature on the relative abundances of
Firmicutes in the gut microbiota (15). For example, previous studies in amphibians
observed that several Firmicutes decreased in relative abundances within the gut
microbiotas of adult salamanders (2) and frog tadpoles (6) reared at high relative to low
temperatures. Similarly, a study of hens found that the gut microbiota displayed
reduced relative abundances of Firmicutes during summer months relative to spring
months (16). These parallels suggest that some responses of the tetrapod gut micro-
biota to temperature may be conserved across host taxa. However, we observed no
decrease in alpha diversity (i.e., species richness) when lizards were moved to higher
temperatures, contrasting recent experiments with the lizard Zootoca vivipara (12).

We also observed an elevated rate of turnover in microbiota composition in
treatment lizards after they were moved to 35°C compared to control lizards main-
tained at 25°C throughout the experiment (Fig. 4A). Wild-caught control lizards at 25°C
maintained individual-specific gut microbiotas throughout the duration of the exper-
iment, but treatment lizards in some cases lost their compositional distinctiveness after
exposure to 35°C (Fig. 4B and C). These results mirror previous observations that
microbiotas associated with corals display increased variability in response to elevated
temperatures (17), suggesting the possibility that temperature may have some com-
mon effects on the temporal dynamics of host-associated microbial communities. The
effects that this destabilization of the microbiota may have on host fitness are unclear.
For example, 35°C is in the range of preferred body temperatures (i.e., the body
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temperature they seek out in a thermally variable environment) of S. occidentalis (18).
Preferred body temperatures correlate with the body temperatures at which physio-
logical performance is maximized (19), and indeed, locomotor performance in S.
occidentalis is at or near maximum at 35°C (20). Nevertheless, the observations that 35°C
destabilizes the gut microbiota (Fig. 4) raises questions about the potential costs of
long-term exposure of hosts to these elevated temperatures.

Functional categorization of bacterial species in our data set through BugBase (13)
further corroborated the possibility that the compositional shifts in the lizard gut
microbiota that occurred at 35°C may have deleterious effects on some hosts. We
observed overrepresentation of potentially pathogenic bacterial lineages within the gut
microbiota of lizard hosts at 35°C compared to 25°C (Fig. 3). However, the classification
of bacterial taxa as pathogens primarily reflects data from humans (13), and the degree
to which these taxa display pathogenic qualities in fence lizards remains an area for
further investigation.

In addition, the mechanisms underlying our observations that temperature altered
the fence lizard gut microbiota remain unclear. In endotherms, the shifts in composition
of the gut microbiota in response to changes in ambient temperature that have been
observed (e.g., see reference 10) are likely due to changes in host physiology caused by
changes in temperature, rather than changes in temperature directly. However, in
ectotherms, whose internal temperatures can vary widely, temperature may exert a
more direct effect on microbiota composition. Future experiments to study the per-
formance of bacterial lineages under different thermal and host physiological condi-
tions will be required to assess the relative contributions of these mechanisms to the
effects of temperature that we observed.

Another important and unresolved question is whether microbiota composition can
affect host thermal physiology and tolerance. For example, it remains unclear based on
our experiments whether the decreased relative abundances of Firmicutes that we
observed could have functional effects on host physiology that might impact thermal
performance. The ratio of Firmicutes and Bacteroidetes within the guts of individual
mammals has been associated with altered capacities of the microbiota for energy
harvest and functional effects on host metabolism (21). In addition, previous experi-
ments in germfree mice have shown that cold-associated microbiota compositions are
marked by increased Firmicutes relative abundances and can confer phenotypes asso-
ciated with cold tolerance in hosts (e.g., white-fat browning) (10). However, the effects
of temperature-driven shifts in the gut microbiota on host metabolism and physiology
have not been tested by experiments in nonmammalian tetrapods. We identified
components of the S. occidentalis gut microbiota that were significantly associated with
CTmax at the end of the experiment. Specifically, CTmax was associated with PC4 of
microbiota dissimilarities (Fig. 5A), and the distribution of ASV regression P values
differed significantly from the null expectation, suggesting a scenario in which multiple
ASVs were weakly associated with CTmax (Fig. 5B). We did not observe differences in
CTmax between groups (Fig. S2), and the components of the microbiota associated with
CTmax were distinct from those associated with treatment temperature. These results
highlight the need for microbiota transplant experiments designed to test the physi-
ological consequences of standing variation in the lizard gut microbiota and of the
changes in the microbiota that occur in response to temperature.

Cumulatively, our results indicate that temperature significantly affects the gut
microbiota of lizards and that the composition of the gut microbiota is associated
with host thermal performance. These observations raise the question of whether
temperature-induced changes in the lizard gut microbiota contribute to host thermal
performance in natural populations, which should prompt experimental manipulations
of the lizard gut microbiota designed to test the functional effects of temperature-
driven microbiota variation on host phenotypes and fitness. Research into the effects of
microbiome composition on wildlife is in its infancy. This study contributes to an
emerging view that microbiomes are strongly affected by environmental perturbations
such as temperature change (22) and that microbiome changes could have significant
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consequences for hosts (23, 24). Understanding these host-symbiont relationships is
likely to prove critical for our ability to predict and mitigate the effects of global change
on wildlife (25).

MATERIALS AND METHODS
Animal husbandry and fecal collection. Sceloporus occidentalis (n � 25; 4 females and 21 males)

were collected with hand-held lassos on the campus of the California Polytechnic State University (Cal
Poly), San Luis Obispo, California (35.302077°N, �120.659446°W) in February 2018. In San Luis Obispo in
February, mean high air temperatures are 18°C and average low air temperatures are 7°C. However,
lizards emerge to bask on sunny days and can increase their body temperatures well above air
temperature through absorption of solar radiation and conduction from warm rocks (26), allowing
opportunities for capturing individuals. Lizards were brought back to the laboratory, placed in mesh wire
cages (7.8 cm wide, 7.3 cm tall, and 19.5 cm long), and acclimated to the laboratory at room temperature
for 3 days prior to treatment. During this time, fecal pellets were collected in the morning (0800) and the
evening (2000) using forceps that were heat sterilized between collections. Samples were placed in
sterile 1.5-ml collection tube, labeled, and placed in a �80°C freezer. During the entirety of this study,
lizards were fed 1 or 2 crickets/day to recapitulate their insectivorous diet and had access to water ad
libitum.

Lizards were randomly assigned to control (n � 12; 3 females and 9 males) or treatment (n � 13; 1
female and 12 males) groups. Lizards were transferred to two environmental chambers (treatment and
control chambers, both set to a constant temperature of 25°C with a 12:12 photoperiod). Lizard cages in
each treatment were separated from one another by cardboard so the lizards could not see one another,
to avoid potential stress due to interaction. We continued to collect fecal pellets at 0800 and 2000 every
day from each lizard, as available.

After 7 days, lizards in the treatment group were switched to a constant temperature of 35°C, and
control lizards were kept at a constant 25°C. All fecal samples collected in the morning on the day of
transfer were labeled as 25°C and samples collected at night were then labeled according to the
treatment they were in. Feeding and collection were continued according to the methods described
above.

Upper thermal tolerance assays. Lizard upper thermal tolerance was recorded as the temperature
at which lizards lost their righting response (ability to right themselves when flipped over). This is a
measure of the critical thermal maximum (CTmax), the temperature at which an organism loses its
locomotor ability and at which continued heating would result in death (27–29). We measured CTmax for
each lizard at the end of the experiment with a Cal Poly-engineered device, the gas analysis temperature
oxygen regulation system (GATORS). For the GATORS, lizards were fitted with cloacal resistance tem-
perature detectors to measure body temperature, equilibrated to 30°C, and placed in individual cylin-
drical chambers (18-cm length, 4-cm diameter) encased in larger transparent chambers (25-cm length,
10-cm diameter), with ambient air inside the inner chambers heated at exactly 1°C per minute. As lizards
began gaping and panting at high temperatures, the chambers were turned so that lizards were flipped
onto their backs and attempted to right themselves; the body temperature at which they could no longer
do so was considered their CTmax. Lizards were then rapidly removed from the chambers and cooled to
room temperature; no lizards perished during this process.

Microbiome sequencing. Total genomic DNA from fecal samples (n � 89) was extracted using the
MoBio Powerlyzer PowerSoil bead-beating kit. PCR amplification of the V4-V5 region (515F � 926R) of
16S rRNA genes was performed in triplicate as previously described (30). All samples and four negative-
control wells were sequenced on a single lane of an Illumina MiSeq sequencer using 2 � 300 bp PE v3
chemistry. Samples were sequenced to a minimum depth of 7,500 reads per sample.

16S data processing and functional inference. Reads were initially processed in QIIME 2.0 (31)
implemented on the Qiita webserver. Reads were filtered for quality through Split libraries FASTQ and
trimmed through Trimmed Demultiplexed. Trimmed reads were further processed and grouped into
amplicon sequence variants (ASVs) with the deblur pipeline. ASVs detected in negative-control wells
were removed from all downstream analyses. Rarefaction curves were constructed, and all samples were
rarefied to an even depth of 7,500 reads per sample in order to retain all samples for downstream
analyses. Taxonomy was assigned using the q2-fragment-insertion method in QIIME 2 against the Silva
128 SEPP reference database. Relative abundances of bacterial functional groups and phenotypes were
inferred through the BugBase web server (13). To enable phenotypic profiling through the BugBase web
server, taxonomic identities of ASVs for this analysis were assigned against the Greengenes 97% OTU
(operational taxonomic unit) database gg_13_5.

Statistical analyses. Pairwise beta diversity dissimilarities were calculated from ASV tables. Bray-
Curtis (BC) dissimilarities, which consider relative abundances of ASVs, and binary Sorensen-Dice (BSD)
dissimilarities, which consider only presence and absence of ASVs, were calculated for every pair of
samples. These measures of beta diversity are agnostic to the phylogenetic relationships among ASVs
and enable detection of differences in beta diversity underlain by the distributions of closely related
ASVs. The ASV table underlying these analyses is presented in Data File S1.

We used adonis2 in the vegan package in R (32) to test for independent significant effects of sex,
individual, treatment, time (measured as day number of the experiment), and the interaction between
treatment and time on BC dissimilarities using the “margin” option. Principal-coordinate analyses (PCoA)
were calculated from BC and BSD dissimilarities and plotted in QIIME 2.0. Statistical support for
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differences in bacterial functional groups between treatment and control lizards was assessed by
Mann-Whitney–Wilcoxon tests through the BugBase web server.

Phylofactor (33) was employed using the variance method to test for clades in the bacterial
phylogeny that displayed significantly different relative abundances between treatment and control
individuals after the warming treatment. This method allowed us to test for differences in relative
isometric log ratio balances between groups at all phylogenetic levels in our data set (33). The
phylogenetic tree underlying Phylofactor analyses is presented in Data File S2. In addition, we employed
ANCOM (34), which compares compositional log ratios of ASVs between groups of samples, to test for
ASVs that displayed significantly different relative abundances between treatment and control individ-
uals after the warming treatment. Phylofactor and ANCOM analyses were based on mean gut microbiota
compositions in each individual after the treatment. Mean gut microbiota compositions were calculated
for each individual host by averaging relative abundances of each ASV across samples collected from the
host.

The script compare_trajectories.py was employed in QIIME 1.9 to test whether host individuals in the
treatment group displayed elevated rates of compositional turnover in their gut microbiotas relative to
individuals in the control group. This analysis employed the “trajectory” algorithm and was based on BC
dissimilarities weighted by the distance in days between consecutive samples. In addition, time series
analyses were conducted with q2-longitudinal (35). Feature volatility analyses was performed using
default settings to identify specific ASVs that displayed the most rapid fluctuations in relative abun-
dances within the treatment group.

Regression analyses of the time to loss of righting response and microbiome features were con-
ducted in R with host treatment group included as an effect in the model. False discovery rate-corrected
P values were calculated for each ASV’s regression against the time to loss of righting response. Fisher’s
combined probability test was employed on uncorrected P values using the sumlog command in the
metap package in R. Balances (i.e., ratios of ASV abundances) most associated with loss-of-righting-
response temperature (lrr) were determined using the selbal R package (14) (see the supplemental
material).

Data availability. All 16S rRNA gene sequences produced for this study are available in the European
Nucleotide Archive under accession no. PRJEB39005.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, CSV file, 4.3 MB.
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SUPPLEMENTAL FILE 5, XLS file, 2 MB.
SUPPLEMENTAL FILE 6, XLSX file, 0.01 MB.
SUPPLEMENTAL FILE 7, XLSX file, 0.05 MB.
SUPPLEMENTAL FILE 8, XLSX file, 0.02 MB.
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