Table 1. Monthly stages in the ovarian cycle of 15 *Eutropis rudis* females from Sarawak, Malaysia; *®* = oviductal eggs and concurrent yolk deposition for a subsequent clutch.

<table>
<thead>
<tr>
<th>Month</th>
<th>N</th>
<th>Quiescent</th>
<th>Early yolk deposition</th>
<th>Enlarged follicles > 5 mm</th>
<th>Oviductal eggs</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>February</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>March</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1*</td>
</tr>
<tr>
<td>August</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1*</td>
</tr>
<tr>
<td>November</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1*</td>
</tr>
</tbody>
</table>

the size at which *E. rudis* females from Sarawak, East Malaysia commence reproduction is not known.

From the presence of sperm producing males during 12 months of the year, *E. rudis* is reproductively active throughout the year in Sarawak, East Malaysia which has a tropical climate with equitable temperature and heavy rainfall, spread throughout the year (Das 2011. A Photographic Guide to Snakes and other Reptiles of Borneo. New Holland Publishers, London. 144 pp.).

I thank Alan Resetar (FMNH) for permission to examine *Eutropis rudis*.

STEPHEN R. GOLDBERG, Whittier College, Department of Biology, Whittier, California 90608, USA; e-mail: sgoldberg@whittier.edu.

While hiking near Kelbaker Road in the Mojave National Preserve, San Bernardino County, California, USA (35.19973°N, 115.87013°W, WGS 84; 680 m elev.) at 1615 h on 7 May 2016, a group of about 20 people observed an adult female *Gambelia wislizenii* in orange breeding coloration holding an adult *Dipsosaurus dorsalis* (Desert Iguana) by the head with its mouth. At 1632 h the *G. wislizenii* targeted the base of the *D. dorsalis* tail multiple times with a deliberate twisting motion. Paired with the fact it is unlikely for a *D. dorsalis* tail to autotomize without applied force, we believe that the *G. wislizenii* intended to separate the iguana tail for consumption. There are several anecdotes of *Gambelia* and *Crotaphythus* with tails hanging out of the mouth. It was hypothesized that these lizards ingested prey items whole, with the tail emerging until the anterior of the prey was sufficiently digested to allow room in the gut. Although there are confirmed observations that the entire prey item was forcefully removed from the tail (Fig. 1A–F), and at 1645 h the area, leaving behind the remainder of the *D. dorsalis* carcass. A high quality video of the encounter is available at: https://www.youtube.com/watch?v=BCLmuZqQhNw. *Gambelia wislizenii* is notorious for its boldness and apparent disregard for humans (Parker and Pianka 1976, op. cit.), so we believe our presence did not affect the lizard’s feeding behavior. At this point we captured the *G. wislizenii* by nose and palpated its gut, which was very full of partially digested material in addition to the iguana tail. The *G. wislizenii* was 13.1 cm SVL with a tail length of 27.4 cm, with follicles estimated at 0.5 cm in length. The *D. dorsalis* SVL was 9.6 cm, and 2.4 cm of tail remained on the carcass. The length of the *D. dorsalis* tail consumed was estimated from photographs to be 13.9 cm.

To our knowledge, this is the first reported incidence of saurocaudophagy, or killing lizard prey for the sole purpose of ingesting only its tail. It is not uncommon for lizards to consume their own autotomized tails in the field and laboratory (Neill 1946. Copeia 1946:104; Clark 1971. J. Exp. Biol. 176:295–302), and in some cases, aggressive encounters with conspecifics can lead to cannibalism of autotomized tails in lizards (MatuschkA and Bannett 1987. Parasitolog. Res. 74:88–93) and tuataras (Gillingham et al. 1995. Herpetol. Monogr. 9:5–16). This incident, however, is the first report of saurocaudophagy on a species that does not readily autotomize, *D. dorsalis* (Camp 1916. Univ. California Publ. Zool. 12:503–544; Zani 1996. J. Zool. 240:201–220). *Dipsosaurus dorsalis* tails can be removed with force and will regenerate, but tail loss is not pronounced in this species likely because it relies on tail counterbalance for maximal running speed (Pond 1978. Am. Zool. 18:612). Similarly, crows have been documented forcefully removing the tail from living *Physignathus lesueurii* for consumption, which ultimately survived the encounters (Doody 2013. Herpetol. Rev. 44:679–680).

The observed *G. wislizenii* targeted the base of the *D. dorsalis* tail multiple times with a deliberate twisting motion. Paired with the fact it is unlikely for a *D. dorsalis* tail to autotomize without applied force, we believe that the *G. wislizenii* intended to separate the iguana tail for consumption. There are several anecdotes of *Gambelia* and *Crotaphythus* with tails hanging out of the mouth. It was hypothesized that these lizards ingested prey items whole, with the tail emerging until the anterior of the prey was sufficiently digested to allow room in the gut. Although there are confirmed observations that the entire prey item was swallowed intact (Camp 1916, op. cit.; Tanner and Krogh 1974, op. cit.), it is possible that some of these observations actually result from saurocaudophagy alone.

It is possible that saurocaudophagy occurs after crotaphytid lizards opportunistically capture prey that are too large for the lizard to consume whole, but could still benefit from ingesting part of the prey. Montanucci (1967. Herpetologica 23:119–126) noted that *G. wislizenii* routinely take down other large lizards if they attempt to flee, although smaller lizards are a larger rock, returning to the carcass two minutes later. At 1641 h, the *G. wislizenii* took the base of the *D. dorsalis* tail into its mouth and rapidly twisted its body, but was unsuccessful at removing the tail. After one minute, the *G. wislizenii* passed a urate, again approached the posterior of the *D. dorsalis* (Fig. 1A), took the base of the *D. dorsalis* tail in its mouth and adjusted it, seemingly to achieve a better grip (Fig. 1B). The *G. wislizenii* then rapidly bent the iguana tail and simultaneously twisted its own body (Fig. 1C), resulting in the *D. dorsalis* tail being severed from the body (Fig. 1D). The *G. wislizenii* immediately ingested the tail (Fig. 1E–F), and at 1645 h left the area, leaving behind the remainder of the *D. dorsalis* carcass.
component of their diet. This opportunistic hunting may lead to prey capture when the gut is already distended with food. This observation of saurocaudophagy suggests that *Gambelia* lizards might be able to accurately assess the amount of food they are able to ingest at a given time, at least after the prey has been killed. The extent of deliberate saurocaudophagy in Crotaphytid lizards is an interesting question that remains to be explored.

Fig. 1. Series of still shots from video of a *Gambelia wislizenii* removing and consuming the tail of a *Dipsosaurus dorsalis.*

PHOTOS BY KRISTY PETERSON
Natalie Claunch, School of Natural Resources and the Environment, 103 Black Hall, PO Box 116455, University of Florida, Gainesville, Florida, USA (e-mail: nmcclaun@ufl.edu); Emily Taylor, Department of Biology, 1 Grand Ave, California Polytechnic State University, San Luis Obispo, California, USA (e-mail: etaylor@calpoly.edu)

Hemidactylus frenatus (House Gecko). Predation. *Hemidactylus frenatus* is widespread across Southeast Asia and northern Australia, including the Papua province of Indonesia, where it is non-native. Predation on *H. frenatus* by a Great-tailed Grackle (*Quiscalus mexicanus*) occurred in Mexico (Rojas-Gonzales and Wikida-Kusunoki 2012. Herpetol. Rev.43:133). Here we report two new cases of predation on *H. frenatus*.

The two predation events were observed in Timika District, Papua, Indonesia. At 1552 h on 10 March 2014, in the PT Freeport Indonesia section LL Reclamation and Biodiversity office area (4.61688°S, 136.90839°E), we discovered a Green Treesnake (*Dendrelaphis calligaster*) biting the head of a *H. frenatus* on the trunk of a Matao Tree (*Pometia pinnata*) 1 m above ground level. The snake pressed the *H. frenatus* to the trunk with its body, presumably to prevent the gecko from escaping. The snake successfully swallowed the gecko starting from the head. The event lasted approx. 10 minutes, with minimum disturbance from the observer.

At 2229 h on 3 June 2016, inside a barrack building in a PT Freeport Indonesia mining camp MP-38 (4.39462°S, 136.93323°E), a juvenile *H. frenatus* was chased and swallowed by the Flat-tailed House Gecko, *Hemidactylus platyurus*. The *H. platyurus* first bit the right forelimb of the *H. frenatus*, and then swallowed the *H. frenatus* head-first. The event, including the chase, lasted around 3 minutes. These two observations contribute to the knowledge of ecological interactions of an invasive species with both native species and non-native species in this area.

We thank Julia Mattner for the discussion. Sean Doody kindly reviewed the manuscript.

Kukuh Indra Kusuma, Section LL Reclamation and Biodiversity, Environmental Department, PT Freeport Indonesia JL. Mandalay Raya Selatan No 1, Kuala Kencana, Papua 99920, Indonesia (e-mail:kkkusuma@fmi.com); Amir Hamidy, Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science-LIPI, Jl. Raya Jakarta Bogor km 46, Cibinong, West Java 16911, Indonesia.

Hemidactylus mabouia (Tropical House Gecko). Endo-parasites. *Hemidactylus mabouia* is native to tropical Africa, including Madagascar, and has become established in the United States (Florida), Mexico, parts of South America, Central America, West Indies, and possibly Ascension Island in the Atlantic (Lever 2003. Naturalized Reptiles and Amphibians of the World. Oxford University Press. New York. 318 pp.). The list of helminths infecting *H. mabouia* is extensive and can be found in Simonsen and Sarde (1985. J. Herpetol. 19:428–430), Baker (1987. Mem. Univ. Newfoundland, Occas. Pap. Biol. 11:1–325), Anjos et al. (2005. J. Helminthol. 79:307–313), and Anjos et al. (2008. B. Parasitol. 103:309–318). Many predation records by different groups of vertebrates upon amphisbaenians have been reported, such as birds, mammals, snakes, and lizards (Folly et al 2015. Herpetol. Notes. 8:465–466). The Rufescent Tiger Heron, *Tigrisoma lineatum*, is a bird species of the family Ardeidae that lives on the banks of rivers and feeds on fish, mollusks, amphibians, and reptiles. During an avifaunal survey on 5 September 2014, we observed a *T. lineatum* preying upon an adult *L. microcephalus* at the margins of a temporary pond (Fig. 1). The predation event took place in the “Sossego do Imbê” region, municipality of Santa Maria Madalena, Rio de Janeiro, southeastern Brazil (41.80230°, 21.89926°W; WGS 84). For approximately 10 min, the heron pecked at the worm lizard and pressed it against the ground. At this point, the worm...