MECHANICAL ENGINEERING PROGRAM

ABET COURSE SYLLABUS

ME 444: Combustion Engine Design (4) Elective

Course Description: Application of design parameters to the various engine cycles. Aspects of combustion processes. Emission regulation effects on engine design. Static and dynamic loading. 3 lectures, 1 laboratory.

Prerequisite Courses: ME 303, ME 343, ME347

Prerequisites by Topic: Thermal Engineering; Heat Transfer; Fluid Mechanics

Engines - An Introduction, by J. Lumley, Cambridge University Press, 1999

Course Coordinator/Instructor: Patrick Lemieux, Professor of Mechanical Engineering

Course Learning Outcomes: 1. Understand and predict the performance of various engine platforms, and be able to specify a solution to a given engine application problem.
2. Demonstrate the ability to analyze and predict products of combustion of internal combustion engines operating under specified conditions.
3. Modify or redesign existing engine designs to affect performance in a predictable and verifiable way.

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
<td>l</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>m</td>
<td></td>
</tr>
</tbody>
</table>
Topics Covered:
1. The lectures include units on engine performance, similitude, cycles, modeling, fuels, combustion, emissions, engine mechanics, supercharging, and heat transfer in engines.
2. The laboratory component includes tests to measure the effect on performance of various engines parameters, including spark timing, Fuel Pulse Width, water injection, compression ratio, and turbocharger intercooling.

Laboratory Projects:
1. Megatech II Optical Engine Performance Analysis.
3. CFR Emissions Analysis
5. JFS-100 Gas Turbine Performance

Class/Lab Schedule:
Three 50-minute lectures per Week, one 180-minute lab every 2 weeks.

Contribution of Course to Meeting the Professional Component:
(a) College-level mathematics and basic sciences: 0 Credits
(b) Engineering Topics: 4 Credits
 Design? Yes.
(c) General Education: 0 Credits
(d) other: 0 Credits

Prepared by: P.Lemieux
DATE: 5/14/14