- Show all work! Write everything down. Insufficient justification can mean no credit.
- Start each problem on a new page.
- No assistance of any kind is allowed on this exam. This includes calculators and phones.

Groups

- 1. (5 points) Let N be a finite normal subgroup of G. Prove there is a normal subgroup M of G such that [G:M] is finite and nm=mn for all $n \in N$ and $m \in M$. [Hint: You may use the fact that the centralizer $C(h) := \{g \in G : ghg^{-1} = h\}$ is a subgroup G.]
- **2.** (5 points) Let S_7 denote the symmetric group.
 - (a) Give an example of two nonconjugate elements of S_7 that have the same order.
 - (b) If $g \in S_7$ has maximal order, what is the order of g?
 - (c) Does the element g that you found in part (b) lie in A_7 ? Fully justify your answer.
 - (d) Determine whether the set $\{h \in S_7 : |h| = |g|\}$ is a single conjugacy class in S_7 , where g is the element found in part (b).

Rings

- **3.** (5 points) Let R be a commutative ring with 1. Use theorems in ring theory to prove:
 - (a) (x) is a prime ideal in R[x] if and only if R is an integral domain.
 - (b) (x) is a maximal ideal in R[x] if and only if R is a field.
- **4.** (5 points) Let R be a commutative ring with 1, and $\sigma: R \longrightarrow R$ a ring automorphism.
 - (a) Show that $F = \{r \in R : \sigma(r) = r\}$ is a subring of R (with 1).
 - (b) Show that if σ^2 is the identity map on R, then each element of R is the root of a monic polynomial of degree 2 in F[x], where F is as in (a).

Vector Spaces

- **5.** (5 points) Let $A = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$
 - (a) Compute the characteristic polynomial $p_A(x)$ of A. It has integer roots.
 - (b) For each eigenvalue λ of A, find a basis for the eigenspace E_{λ} .
 - (c) Determine if A is diagonalizable. If so, give matrices P and B such that $P^{-1}AP = B$ and B is diagonal. If not, explain carefully why A is not diagonalizable.