Directions.

- Do not leave Zoom until your exam is uploaded. If you get disconnected, scan your exam immediately (with time signature).
- Show all work! Write everything down. No justification, no credit.
- Start each problem on a new page.
- No assistance of any kind is allowed on this exam. This includes calculators, phones, notes, text, internet, and communication with other people.

- 1. Prove from the definition alone that there are no nonabelian groups of order less than 5.
- 2. Let A_5 denote the alternating group on a 5-element set $\{1, 2, 3, 4, 5\}$. The set of automorphisms of A_5 form a group, denoted $\operatorname{Aut}(A_5)$. The group of *conjugations* of A_5 , denoted $\operatorname{Conj}(A_5)$, is the subgroup of $\operatorname{Aut}(A_5)$ consisting of automorphisms of the form $\gamma_s := s(-)s^{-1}$ where $s \in A_5$. Explicitly, $\gamma_s(x) = sxs^{-1}$ for any $x \in A_5$.
 - (a) Prove that the function $\gamma: A_5 \longrightarrow \operatorname{Conj}(A_5)$, taking $s \in A_5$ to γ_s , is a surjective homomorphism.
 - (b) Prove that A_5 is isomorphic to $Conj(A_5)$.
- **3.** Let $\mathbb{Z}[X]$ be the ring of polynomials with integer coefficients, and let $K \subset \mathbb{Z}[X]$ be the kernel of the "evaluation at 1" homomorphism

$$\varepsilon_1 : \mathbb{Z}[X] \longrightarrow \mathbb{Z}_3$$

$$f(X) \longmapsto [f(1)]_3$$

- (a) Characterize K as a set.
- (b) Determine whether K is a maximal ideal. Fully justify your conclusion.
- (c) Determine whether K is a principal ideal. Justify by either exhibiting a generator or proving that there isn't one.
- **4.** Let $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.
 - (a) Determine whether A is diagonalizable, and if so, give its diagonal form along with a diagonalizing matrix.
 - (b) Compute A^{42} . Remember to show all work.
- **5.** Let \mathbb{F}_9 denote the field of 9 elements.
 - (a) Show that each nonzero $a \in \mathbb{F}_9$ is a root of $X^8 1 = (X 1)(X + 1)(X^2 + 1)(X^4 + 1) \in \mathbb{F}_3[X]$.
 - (b) Use the pigeonhole principle to prove that \mathbb{F}_9 has an element of multiplicative order 8. (Include a proof that the pigeonhole principle applies.)