Real Analysis Qualifying Exam, June 5, 2022

Instructions: This exam consists of 5 questions. Each question is worth 5 points, giving a grand total of 25 points possible. Please present all of your work in a clear and concise manner and answer each question as completely as possible. Unsupported work will receive no credit, and partially completed work may receive partial credit. Good luck!

- 1. Prove that every convergent sequence of real numbers has a maximum or a minimum value.
- 2. Let (f_n) be a sequence of increasing functions on [a,b] with $\sum_{n=1}^{\infty} f_n(x)$ absolutely convergent when x=a and when x=b. Show that $\sum_{n=1}^{\infty} f_n(x)$ converges absolutely for each x in [a,b] and also that the series converges uniformly on [a,b].
- 3. Find, with proof, the maximum number of real roots of the function $f(x) = x^{16} + ax + b$, where a and b are real numbers.
- 4. (a) State a definition for a function $f:[a,b]\to\mathbb{R}$ to be Riemann integrable.
- (b) Let

$$f(x) = \begin{cases} 1, & 1 \le x < 2\\ 10, & x = 2\\ 2, & 2 < x \le 3. \end{cases}$$

Prove, using your definition, that f is integrable on [1,3].

5. Suppose $f: R \to R$ is a contraction, i.e., there is a number 0 < k < 1 such that for all x and y, $|f(x) - f(y)| \le k |x - y|$. Fix a number x_0 and define $x_n = f(x_{n-1})$ for each $n \ge 1$. Prove the sequence (x_n) is Cauchy.