
1

FORMAL CONSTRUCTIONS IN THE BRAUER GROUP OF THE
FUNCTION FIELD OF A p-ADIC CURVE

ERIC BRUSSEL AND EDUARDO TENGAN

Abstract. We study the relationship between the cohomology of the function
field of a curve over a complete discretely valued field and that of the function
ring of curves resulting over its residue field. The results are applied to prove
the existence of noncrossed product division algebras and indecomposable divi-
sion algebras of unequal period and index over the function field of any p-adic
curve, generalizing the results and methods of [10].

1. Introduction

Let F be a field. An F -division algebra D is a division ring that is finite-
dimensional over F and whose center is F . We say D is a crossed product if D
contains a Galois field extension E/F that is maximal in D with respect to contain-
ment of subfields, and a noncrossed product if it does not. D is a crossed product
precisely when its multiplication rule can be described by a Galois 2-cocycle with
values in the multiplicative group E∗ of a Galois extension E/F , and as a result all
early division algebra constructions were crossed products by default. The classical
fact that every F -division algebra contains a separablemaximal subfield implies that
the matrix algebra Mn(D) is a crossed product for some n, for any D. During the
development of class field theory it was established that all Q and Qp-division alge-
bras are crossed products via a cyclic Galois extension. Decades later, noncrossed
product F -division algebras were shown to exist, in a 1972 paper by Amitsur ([1]).
Since then several different and interesting constructions have appeared over various
fields (see [5, Section 0] for additional background).

An F -division algebra is decomposable if it can be expressed as an F -tensor prod-
uct of two (nontrivial) F -division algebras, and indecomposable otherwise. Division
algebras admit two measures of size called period and index, analogous to exponent
and order for finite abelian groups. Before it was proved otherwise, it would have
been reasonable to conjecture that any F -division algebra of unequal period and
index would decompose into factors of equal period and index. Indecomposable
division algebras of unequal period and index first appeared in 1979, in papers by
Amitsur-Rowen-Tignol [3] and Saltman [37]. Since then there have been several
other constructions, notably by Jacob in [25] and Karpenko in [26, 27] (see [5,
Section 9]).

1The second author was supported by CNPq grant 303817/2011-9.
1991 Mathematics Subject Classification. 11G20, 11R58, 14E22, 16K50.
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F -division algebras are fundamentally arithmetic objects in the sense that they
become trivial when scalar-extended to an algebraic closure of F . As such their tax-
onomy is a reflection of F ’s arithmetic, and this motivates our interest in construc-
tions of noncrossed products and indecomposables of unequal period and index. We
are particularly interested in the relationship between possible constructions over
arithmetically related fields, such as the function fields of curves over discretely
valued fields and over their residue fields.

The Brauer group Br(F ) is a group formed by isomorphism classes of F -division
algebras, and its n-torsion subgroup is isomorphic (via the crossed product con-
struction) to the degree-two cohomology group H2(F, µn), for n prime-to-char(F ).
In this paper we study the cohomology groups Hq(F, (Z/n)(i)) of a field F that is
finitely generated and of transcendence degree one over a complete discretely val-
ued field K = (K, v), and in particular over the p-adic field Qp. Such a field F is
always the function field of a regular, projective, flat relative curve X/Ov. In [10]
it was shown that if K = Qp and F admits a smooth model X/Zp then there exist
noncrossed product F -division algebras, and indecomposable F -division algebras of
unequal prime-power period and index. This applies to fields such as Qp(t) but not
to the function fields of all p-adic curves. In this paper we generalize the machinery
of [10] to the function field F of an arbitrary p-adic curve, and then prove the ex-
istence of noncrossed product F -division algebras, and indecomposable F -division
algebras of unequal prime-power period and index.

The Brauer groups of function fields of p-adic curves have been the focus of
several important papers recently, including the work by Saltman [39, 41], which
initiated much of the recent activity, work by Harbater-Hartmann-Krashen [23, 24],
which uses patching methods, and work by Lieblich [30] and Parimala-Suresh [34]
(on the u-invariant of quadratic forms). The use of 2-dimensional models to study
these Brauer groups goes back at least to Saito [36] and Kato [28], and ultimately
to Grothendieck.

Our technique is to lift constructions from the rational function ring κ(C) of
the reduced scheme C underlying the closed fiber of X/Zp, which is a product
of global fields. Our main technical advance over [10] is to show how to do this
if C is reducible with mild singularities. This situation can be unavoidable, and
arises naturally after blowups of X. The extra generality has crucial implications
for the theory of Br(F ), and allows us, for example, to prove in [11] that every
F -division algebra of prime period ` 6= p and index `2 decomposes into two cyclic
F -tensor factors, hence is a crossed product, even when F = Qp(t). The latter
result generalizes Suresh’s result [42], which assumes roots of unity, and does not
cover Qp(t) in general.

We summarize the technical results. Let K = (K, v) be a complete discretely
valued field K with residue field k, n a number prime-to-char(k), and let F/K be
a finitely generated field extension of transcendence degree one. Let X/Ov be a
regular, projective, flat, 2-dimensional model for F . The closed fiber X0/k is a
projective curve, whose underlying reduced structure C may be assumed to consist
of regular irreducible components Ci, exactly two of which meet at the singular
points S of C. Our main theorem (Theorem 4.9) constructs for any integer r and
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any q ≥ 0 a homomorphism

λ : Hq(OC,S ,Z/n(r)) −→ Hq(OX,S ,Z/n(r)) ↪→ Hq(F,Z/n(r))

whose first arrow splits the restriction map Hq(OX,S ,Z/n(r))→ Hq(OC,S ,Z/n(r)).
Let FC =

∏
i FCi be the product of the completions of F with respect to the

valuations defined by the Ci. We use λ to construct for any q ≥ 1 a commutative
diagram

Hq(F,Z/n(r))

resF |FC
��

Hq(OC,S ,Z/n(r))⊕Hq−1(OC,S ,Z/n(r − 1))

λ
33

η
// Hq(FC ,Z/n(r))

so that λ((αC , θC)) = λ(αC)+(π) ·λ(θC) for a uniformizer π of FC . When K = Qp,
q = 2, and r = 1, we show that λ factors through H2(FC , µn) to determine an index-
preserving map from the subgroup im(η) ≤ H2(FC , µn) to H2(F, µn), splitting the
restriction map. Since the residue fields κ(Ci) in this case are global fields we are
then able to construct indecomposable F -division algebras and noncrossed product
F -division algebras, in the same manner as [10]. When the dual graph of C has
nontrivial topology, i.e., nonzero (first) Betti number, we construct cyclic covers of
X that are (defined and) trivial at every point of X except the generic point of X.
These arise as cyclic covers of C that are trivial at every point, and transported to
X via λ. When K = Qp they are the completely split cyclic covers of Saito ([36]).
We thank Colliot-Thélène for drawing our attention to these interesting examples.

2. Background and Conventions

We use [31, Chapter 8,9], [22, Section 2], and [21, Chapter XIII] for many of the
following definitions.

2.1. General Conventions. Let S be an excellent scheme, n a number that is
invertible on S, and for any i ∈ Z let Λ = (Z/n)(i) be the twisted étale sheaf. Let
K(S) denote the total fraction ring of S, which is the ring of global sections of the
sheaf of total fractions. We write Hq(S,Λ) for the étale cohomology group, and if
Λ is understood (or doesn’t matter) we write Hq(S, r) instead of Hq(S,Λ(r)), and
Hq(S) in place of Hq(S, 0). If S = SpecA for a ring A then we write Hq(A, r). If
D is a closed subscheme of S we write κ(D) for its total fraction ring. If T → S
is a morphism of schemes then the restriction resS|T : Hq(S) → Hq(T ) is defined,
and we write βT = resS|T (β). If S = SpecA and T = SpecB for a ring B we write
βB = resA|B(β) instead. If Z → S is another morphism, we write ZT for the fiber
product Z ×S T .

2.2. Valuation Theory. If v is a discrete valuation on a field F we write κ(v) for
the residue field of the valuation ring Ov, and Fv for the completion of F at v. If
S is a noetherian connected normal scheme with function field F and v arises from
a prime divisor D on S, we generally substitute D for v, and write vD for v, κ(D)
for κ(v), and FD for Fv. If D is a sum of prime divisors Di we write FD =

∏
i FDi .

We will abuse this notation and write FD should D be a closed subscheme of pure
codimension one.
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By “Witt’s Theorem” (see [16, 7.10]) for each discrete valuation v on the field F
there is a short exact sequence

0 // Hq(κ(v),Λ)
inf // Hq(Fv,Λ)

∂v // Hq−1(κ(v),Λ(−1)) // 0

where inf is the inflation map and ∂v is the residue map. We use this sequence to
identify Hq(κ(v),Λ) with the corresponding subgroup of Hq(Fv,Λ). If α ∈ Hq(Fv,Λ)
then ∂v(α) is called the residue of α at v. More generally, suppose T is a noetherian
scheme, ξ is a generic point of T , and α ∈ Hq(T,Λ). Then for each discrete valuation
v on the field F = κ(ξ), α has a residue

∂v(α)
df
= ∂v(αFv ) ∈ Hq−1(κ(v),Λ(−1))

We say α is unramified at v if ∂v(α) = 0 and ramified at v if ∂v(α) 6= 0. If α is
unramified at v the value of α at v is the element

α(v) = αFv ∈ Hq(κ(v),Λ) ≤ Hq(Fv,Λ)

(see [16, 7.13, p.19]). Suppose T is as above and T → S is a birational morphism
of noetherian schemes (see [17, I.2.2.9]). The ramification locus of α ∈ Hq(T,Λ)
on Sred is the sum (disregarding multiplicities) of the prime divisors on Sred that
determine valuations at which α is ramified, over all generic points of Sred.

2.3. Tamely Ramified Covers. Let S be a noetherian normal scheme, D a divisor
on S, U = S−D, and for each generic point ξ of SuppD, let Kξ = FracOS,ξ. Note
that S being normal implies that the irreducible components of S are disjoint. We
say ρ : T → (S,D) is a tamely ramified cover (ramified along D) if

(1) ρU : V = T ×S U → U is étale;
(2) ρ : T → S is finite;
(3) each irreducible component of T dominates an irreducible component of S;
(4) T is normal;
(5) for each generic point ξ of SuppD, the étale Kξ-algebra L defined by

SpecL = V ×U SpecKξ is tamely ramified with respect to the discrete
valuation determined by ξ.

In (5) L/Kξ is étale, hence L is a finite product of separable field extensions of Kξ,
and L is tamely ramified if each field extension is tamely ramified (with respect
to OS,ξ) in the usual sense. If S = SpecA and T = SpecB, we will also say B
is a finite tamely ramified A-algebra. This is the definition [22, Definition 2.2.2]
given by Grothendieck-Murre. If S is regular and D has normal crossings on S, the
last condition (5) is equivalent to the definition [21, XIII.2.3(c)] given in SGA 1,
allowing us to use the results of [21, XIII.5].

If S is a noetherian scheme whose irreducible components are normal, we will
say ρ : T → (S,D) is a tamely ramified cover (ramified along D) if again ρ is finite
and V → U = S−D is étale, and the restriction ρSi to each irreducible component
Si of S is a tamely ramified cover (ramified along DSi).

2.4. Standard Setup. K = (K, v) is a complete discretely valued field with complete
discrete valuation ring R = Ov and residue field k, F/K is a finitely generated field
extension of transcendence degree, and X is a regular connected 2-dimensional
scheme that is flat and projective over SpecR and has function field F = K(X).
We call X/R a (regular) relative curve, and write X0 = X ⊗R k for the closed fiber
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(a projective curve over k by [31, 8.3.3]), C = X0,red for the reduced subscheme
underlying X0, and C1, . . . , Cm for the irreducible components of C. We assume
each Ci is regular, and at most two of them meet at any closed point of X, a
situation that can always be obtained by blowing up, using Lipman’s embedded
resolution theorem (see [31, 9.2.4]). We let S denote the set of singular points of
C. Note that all closed points of X lie on C, and for each closed point z ∈ X we
have dimOX,z = 2 by [31, 8.3.4(c)]. Since X is regular, OX,z is then factorial by
Auslander-Buchsbaum’s theorem.

We say an effective (Cartier) divisor D on our relative curve X/R is horizontal
if each irreducible component of SuppD maps surjectively (hence finitely by [31,
8.3.4(a),(b)]) to SpecR, and vertical if SuppD is contained in C. If D is a reduced
and irreducible horizontal divisor then it is flat over SpecR, since R is a discrete
valuation ring. Every effective divisor on a regular relative curve X/R is a sum of
horizontal and vertical divisors, and the horizontal prime divisors are exactly the
closures of the closed points of the generic fiber ([31, 8.3.4(b)]). Since R is henselian,
each irreducible horizontal divisor has a single closed point. More generally, since R
is henselian and X/R is projective there is a 1-1 correspondence between connected
components of a horizontal divisor D and connected components of D ⊗R k ([19,
Proposition 18.5.19]).

2.5. Distinguished Divisors. In general there will be many horizontal divisors on
our X/R that restrict to a given divisor on C. In order to construct our lifts from
C to X we select a single regular horizontal divisor for each closed point, as follows.

Proposition 2.6. Assume the setup of (2.4). Then for each closed point z ∈ X
there exists a regular irreducible effective horizontal divisor D ⊂ X that intersects
each irreducible component of C passing through z transversally at z.

Proof. Transversal intersection with a single component is by [31, 8.3.35(b)] and
its proof (see also [20, 21.9.12]). Thus if z ∈ Ci ∩ Cj (i 6= j) and ti and tj are
local equations for Ci and Cj , then we have local equations fi and fj for effective
regular horizontal divisors such that (fi, ti) = (fj , tj) = mz ⊂ OX,z. If (fj , ti) =
mz or (fi, tj) = mz then a suitable D is defined locally by fj or fi. Otherwise
(fi + fj , ti) = (fi + fj , tj) = mz, and we define D locally by fi + fj . The rest of the
proof proceeds as in [31, 8.3.35]. �

We fix a set of these (prime) divisors, and let D denote the union of their supports.
We will say a divisor D is distinguished and write D ∈ D whenever D is reduced
and supported in D . Let DS denote the subset that avoids the set of singular points
S of C. Note that each D ∈ D is a disjoint union of its irreducible components,
each of which meets each irreducible component of C transversally.

3. Structure of Tame Covers

Lemma 3.1 (Structure). Assume the setup of (2.4). Suppose ρ : Y → (X,D) is a
tamely ramified cover, where D ∈ D . Then

a) The structure map ρ : Y → X is flat.
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b) Y/R is a regular relative curve, Y0,red = CY , each irreducible component of CY
is regular, SY = ρ−1(S) is the set of singular closed points of CY , and exactly
two irreducible components of CY meet at each point of SY .

c) The support of the irreducible components of D′Y for D′ ∈ D generate a set DY

of distinguished divisors on Y .

Proof. Since Y → X is finite, dim(X) = dim(Y ) = 2 by [31, 2.5.10], and Y →
SpecR is projective as the composition of projective morphisms ([31, 3.3.32]). Let
y ∈ Y be a closed point and set x = f(y), A = OX,x, B′ = OY,x, and B = OY,y. By
B′ we mean the ring of the fiber over SpecOX,x on Y . Choose a geometric point
over x that lifts to each point of Y lying over x, and use this in the following to
define the strict henselizations with respect to the maximal ideals of these points.

Since the statements involving D are local and D is a disjoint union of its irre-
ducible components we may assume D is irreducible. Let Ci ⊂ C be a (regular)
irreducible component going through x, and let {f, t} ⊂ A be the regular system
of parameters formed by local equations for the distinguished prime divisor passing
through x, and for Ci, respectively. Then the strict henselization Ash of A with
respect to the maximal ideal of A is a two-dimensional regular local ring, faithfully
flat over A, with regular system of parameters {f, t} (see [20, 18.8]).

If x 6∈ D then B′⊗AAsh is a finite étale Ash-algebra by base change, since ρ|X−D
is finite-étale. If x ∈ D then B′⊗AAsh is a finite tamely ramified Ash-algebra by [22,
Lemma 2.2.8]. By [20, 18.8.10], Bsh is a factor of the direct product decomposition
of B′ ⊗A Ash, hence Bsh is a finite tamely ramified local Ash-algebra, in particular
it is a normal local ring, hence it is a normal domain. It follows that Bsh is the
integral closure of Ash in the field L̃ df

=FracBsh. Since the tame fundamental group
of the strictly henselian regular local ring Ash is abelian ([21, XIII.5.3]) the field
extension L̃/FracAsh is Galois, and by Abhyankar’s Lemma ([13, A.I.11], see also
[22, Corollary 2.3.4])

Bsh = Ash[T ]/(T e − f) (some e ≥ 1)

By [22, Lemma 1.8.6] Bsh is a regular (2-dimensional) local ring with system of
parameters { e

√
f, t}. Since B → Bsh is faithfully flat and Bsh is regular, B is

regular by flat descent ([18, 6.5.1] or [32, 23.7(i)]), and since B is the local ring of
an arbitrary closed point, we conclude Y is regular. It follows that ρ : Y → X is
flat by [32, 23.1], proving (a), and since Y is regular and Y → SpecR is flat and
projective, Y/R is a regular relative curve.

We derive a system of parameters for B. The prime ideal ( e
√
f) ⊂ Bsh is the only

one lying over (f)Ash since, for κ(f) = FracAsh/(f)Ash, the ring Bsh ⊗Ash κ(f) =
κ(f)[T ]/(T e) of the fiber over Specκ(f) consists of a single prime ideal. Since
SpecBsh → SpecB is surjective, the image ( e

√
f) ∩ B of ( e

√
f) in SpecB is the

unique prime lying over (f) ⊂ A, and since B → Bsh is flat, ( e
√
f) ∩ B has height

one, hence is principal (since B is factorial), hence ( e
√
f)∩B = (g) for some g ∈ B.

Then ( e
√
f) is the unique prime of Bsh lying over (g), and (g) is the unique prime

of B lying over (f). Since B → Bsh is unramified, (g)Bsh = ( e
√
f). Since B → Bsh

is faithfully flat, IBsh ∩ B = I for all ideals I of B (by e.g. [4, Exercise 3.16]), so
since (g, t)Bsh = ( e

√
f, t) is maximal, (g, t)Bsh ∩ B = (g, t) is the maximal ideal of

B. Thus {g, t} is a regular system for B.
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Since t is a local equation for ρ−1Ci, ρ−1Ci is regular and irreducible at y for
each Ci passing through x. In particular CY =

⋃
i ρ
−1Ci is reduced, and so equals

Y0,red, and since at most two irreducible components of C meet at x, at most two
irreducible components of CY meet at y. Since SpecB → SpecA is surjective, CY
has at least the number of components at y as does C at x. Thus y is a singular
point on CY if and only if x = f(y) ∈ S. This completes the proof of (b).

If D′ ∈ D is the distinguished (horizontal) prime divisor running through x then
there is a single irreducible component of D′Y passing through y, whose support
D′Y,red has local equation g at y. Thus each irreducible component of D′Y covers D′,
hence SpecR, hence D′Y is horizontal. Since g is part of the regular system {g, t}
at the arbitrary closed point y we see that D′Y,red is regular, and since t is a local
equation for an arbitrary irreducible component of CY passing through y, D′Y,red
intersects each component of CY transversally. Thus the supports of the irreducible
components of the various D′Y for D′ ∈ D generate a set of distinguished divisors
DY for Y . This proves (c). �

Lemma 3.2. Suppose X is a regular noetherian scheme and L is an étale K(X)-
algebra that is tamely ramified along a divisor D. Then the normalization Y of X
in L defines a tamely ramified cover ρ : Y → (X,D).

Proof. Since X is regular, its connected components are integral regular schemes,
hence we may assume X is integral. Since L/K(X) is étale, L is a product of
finite separable field extensions of K(X), hence we may assume L/K(X) is itself a
finite separable field extension. Then the normalization Y exists, Y is normal by
definition, and ρ : Y → X is finite by [31, 4.1.25]. Since ρ : Y → X induces an
injection K(X)→ K(Y ), Y dominates X. Let U = X −D, and set V = Y ×X U .
Since X is normal, Y is connected, and ρ|V is unramified, ρ|V is étale by [21, I.9.11]
(see also [33, I.3.20]). Therefore Y → (X,D) is a tamely ramified cover. �

The next lemma shows how distinguished divisors split in tamely ramified covers.

Lemma 3.3. Assume the setup of (2.4). Suppose ρ : Y → (X,D) is a tamely
ramified cover, where D ∈ D , and D′ ∈ DS is irreducible. Suppose E ⊂ D′Y,red is a
distinguished prime divisor lying over D′ as in Lemma 3.1(c), y = E ×Y CY , and
x = D′ ×X C. Then y and x are regular closed points, and the ramification (resp.
inertia) degree of vE over vD′ equals the ramification (resp. inertia) degree of vy
over vx.

Proof. Since we assume (2.4) and D ∈ D we have Lemma 3.1, which shows CY
is reduced and E ⊂ D′Y,red is distinguished. Note that either D′ ∩ D = ∅ or
D′ ⊂ D. Since D′ and E are distinguished and avoid the singular points of C
and CY , they intersect the reduced closed fibers C and CY transversally, hence
x = D′ ×X C and y = E ×Y CY are regular closed points. We must show that
[κ(E) : κ(D′)] = [κ(y) : κ(x)] and that vE(f) = vy(f0), where f ∈ OX,D′ is a local
equation for D′ on X and f0 ∈ OC,x is a local equation for x on C.

Since D′ is horizontal and irreducible, D′ = SpecS for S a finite local R-algebra
by [31, 8.3.4] and [33, I.4.2], and S is a discrete valuation ring since D′ is regular.
The map E → ρ−1D′ → D′ is finite as a composition of finite morphisms, hence
E = SpecT for T a finite local S-algebra, again a discrete valuation ring since E
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is regular. Since S is a discrete valuation ring, S → T is finite, and T is torsion-
free, T is a free S-module of finite rank, and so [T : S] is well defined. Since
the generic point of E lies over that of D′, we have FracT = T ⊗S FracS, hence
[κ(E) : κ(D′)] = [T : S].

Let A = OX,x, B = OY,y, let t be a local equation for C at x, and set A0 = A/(t)
and B0 = B/(t)B, the (reduced) local rings of the fibers through x and y, as in
the proof of Lemma 3.1. Already κ(x) = S ⊗A A0 and κ(y) = T ⊗B B0 by the
transversality of the intersections. Since B0 = B ⊗A A0 we have κ(y) = T ⊗A A0,
hence [κ(y) : κ(x)] = [T : S] = [κ(E) : κ(D′)] by base change.

Let f ∈ A and g ∈ B be defined as in the proof of Lemma 3.1. To compute the
ramification degree, note that since B → Bsh is faithfully flat, (ge)B = (ge)Bsh ∩
B = (f)Bsh ∩ B = (f)B, hence ge = fu for some u ∈ B∗. Since f and g are
uniformizers for vD′ and vE , respectively, it follows that e(vE/vD′) = vE(f) = e.
On the other hand, let f0 be the image of f in A0, and let g0 be the image of
g in B0. Then f0 cuts out the closed point x on C and g0 cuts out y on CY by
transversality. Thus f0 and g0 are uniformizers for vx and vy, and since ge0 = f0u0,
where u0 is the image of u in B∗0 , we have e(vy/vx) = vy(f0) = e, as desired. This
completes the proof. �

4. Lifting Cohomology Classes

4.1. Let k be a field, and let C/k be a reduced connected projective curve with
regular irreducible components C1, . . . , Cm, at most two of which meet at any closed
point. Denote the singular points of C by S and write OC,S for the semilocal ring
lim−→U

OC(U), where U varies over (dense) open subsets of C containing S. Then
since C has no embedded points, OC,S is a subring of the rational function ring
κ(C) =

∏
i κ(Ci) by [31, 7.1.9]. For each z ∈ S ∩ Ci, let Ki,z = FracOh

Ci,z, a field
since z is a normal point of Ci, and if αi ∈ Hq(κ(Ci)), let αi,z denote the image in
Hq(Ki,z).

Since C/k is projective it is separated (over Z), hence if U ⊂ C is an affine
open subset of C then U → C is an affine map by [31, 3.3.6]. The inverse limit
lim←−U over affine open subschemes of C containing S is then a scheme by [19, 8.2.3],
and this scheme is SpecOC,S by [31, Exercise 5.1.17(c)]. Therefore Hq(OC,S ,Λ) =
lim−→Hq(U,Λ) by [33, III.1.16].

Lemma 4.2 (Gluing). Assume the setup of (4.1). There exists an element α ∈
Hq(OC,S ,Λ) that restricts to αC = (α1, . . . , αm) ∈

⊕
iH

q(κ(Ci),Λ) if and only if
αi is unramified at each z ∈ S ∩ Ci, and αi,z = αj,z (as elements of Hq(κ(z),Λ))
whenever z ∈ Ci ∩ Cj.

Proof. There is an exact sequence ([33, III.1.25])

(4.3)

0 −→ H0
S(OC,S) −→ H0(OC,S) −→ H0(κ(C)) −→ H1

S(OC,S) −→
−→ H1(OC,S) −→ H1(κ(C)) −→ H2

S(OC,S) −→
−→ H2(OC,S) −→ H2(κ(C)) −→ H3

S(OC,S) −→
where the maps Hq(OC,S)→ Hq(κ(C)) are restrictions. Since S is a disjoint union of
closed points, we have HqS(OC,S) =

⊕
z∈S H

q
z(OC,S) =

⊕
z∈S H

q
z(O

h
C,z) by excision
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([33, III.1.28, p.93]). Since Λ is a smooth group scheme, Hq(Oh
C,z) = Hq(κ(z)),

by the cohomological Hensel’s lemma [33, III.3.11(a), p.116]. Since the Ck are
regular and exactly two of them meet at any z ∈ S, we have SpecOh

C,z − {z} =
Spec (Ki,z ×Kj,z) for some i and j, and an “excised” exact sequence

(4.4)

0 −→ H0
z(O

h
C,z) −→ H0(κ(z)) −→ H0(Ki,z ×Kj,z) −→ H1

z(O
h
C,z) −→

−→ H1(κ(z)) −→ H1(Ki,z ×Kj,z) −→ H2
z(O

h
C,z) −→

−→ H2(κ(z)) −→ H2(Ki,z ×Kj,z) −→ H3
z(O

h
C,z) −→

where the map Hq(κ(z))→ Hq(Ki,z ×Kj,z) = Hq(Ki,z)⊕ Hq(Kj,z) is the diagonal
map given by inflation from κ(z) to the henselian fields Ki,z and Kj,z. Since n is
prime-to-p, the map H0(κ(z))→ H0(Ki,z) is an isomorphism, so H0

z(O
h
C,z) = 0, and

for q ≥ 1 we have short exact Witt-type sequences

0→ Hq(κ(z))→ Hq(Ki,z)
∂z−−→ Hq−1(κ(z),−1)→ 0

Thus the long exact sequence breaks up into short exact sequences

(4.5) 0→ Hq(κ(z))→ Hq(Ki,z ×Kj,z)→ Hq+1
z (Oh

C,z)→ 0 (q ≥ 0)

By the compatibility of (4.3) with (4.4) the map Hq(κ(Ci)) → Hq+1
z (Oh

C,z) ≤
Hq+1
S (OC,S) factors through resκ(Ci)|Ki,z . Therefore an element αC = (α1, . . . , αm) ∈

Hq(κ(C)) maps to zero in Hq+1
S (OC,S) if and only if each couple (αi,z, αj,z) is in the

image of some ᾱ ∈ Hq(κ(z)); i.e., αi,z = αj,z, and both are unramified. Thus by the
exactness of (4.3), αC comes from Hq(OC,S) if and only if each αi is unramified at
each z ∈ S ∩ Ci, and αi,z = αj,z whenever z ∈ Ci ∩ Cj . �

Suppose C is as in (4.1). Since exactly two irreducible components meet at any
z ∈ S the dual graph GC is defined, and consists of a vertex for each irreducible
component of C and an edge for each singular point, such that an edge and a
vertex are incident when the corresponding singular point lies on the corresponding
irreducible component ([36, 2.23], see also [31, 10.1.48]). The (first) Betti number
for GC is βC

df
= rk(H1(GC ,Z)) = N +E−V , where V,E and N are the numbers of

vertices, edges, and connected components of GC , respectively. Note N = 1 in the
setup of (4.1).

Lemma 4.6. Assume the setup of (4.1). Then:

a) For any integer r, H1(C,Z/n(r))→ H1(OC,S ,Z/n(r)) is injective.
b) The map Hq(OC,S ,Z/n(q− 1))→ Hq(κ(C),Z/n(q− 1)) is injective for q = 0, 2,

and for q = 1 we have

H1(OC,S ,Z/n) ' (Z/n)βC ⊕ Γ

where (Z/n)βC is the kernel of H1(OC,S ,Z/n) → H1(κ(C),Z/n), and Γ ≤
H1(κ(C),Z/n) is the group of tuples that glue as in Lemma 4.2.

Proof. We suppress the notation for Λ = Z/n(r). Let F ⊂ C − S be a finite set of
(regular) closed points, and set U = C −F , a dense open subset containing S. The
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localization exact sequence is

0 −→ H0
F (C) −→ H0(C) −→ H0(U) −→ · · ·

· · · −→ HqF (C) −→ Hq(C) −→ Hq(U) −→ Hq+1
F (C) −→ · · ·

By excision we have an exact sequence

0 −→ H0
F (C) −→

⊕
z∈F

H0(Oh
C,z) −→

⊕
z∈F

H0(Kz) −→ · · ·

· · · −→ HqF (C) −→
⊕
z∈F

Hq(Oh
C,z) −→

⊕
z∈F

Hq(Kz) −→ Hq+1
F (C) −→ · · ·

where Kz = FracOh
C,z. Since each z is a regular point, Oh

C,z is a discrete valuation
ring, and by [12, Section 3.6] we may replace each Hq+1

z (C) with Hq−1(κ(z),−1),
and the map from Hq(U), which factors through each Hq(Kz), is then the residue
map ∂z. We conclude H0(C) = H0(U), and we have a long exact sequence

(4.7)

0 −→H1(C) −→ H1(U)
∂z−−→

⊕
z∈F

H0(κ(z),−1) −→ · · ·

· · · −→ Hq(C) −→ Hq(U)
∂z−−→

⊕
z∈F

Hq−1(κ(z),−1) −→ · · ·

As H1(OC,S) = lim−→U
H1(U), where the limit is over all such U , H1(C)→ H1(OC,S)

is injective by the exactness of the injective limit functor, proving (a).

For (b) we go back to Λ = Z/n. By (4.3) we have an exact sequence

0 −→ H0(OC,S ,Z/n)
φ1−−→H0(κ(C), Z/n)

φ2−−→ H1
S(OC,S ,Z/n)

φ3−−→
φ3−−→ H1(OC,S ,Z/n)

φ4−−→ H1(κ(C),Z/n)

We compute H0(κ(C),Z/n) =
⊕m

i=1 H
0(κ(Ci),Z/n) = (Z/n)m, and H0(C,Z/n) =

(Z/n)N where N is the number of C’s connected components. Since H0(C,Z/n) =
H0(U,Z/n) for all U containing S, and Hq(OC,S ,Z/n) is the direct limit of the
Hq(U,Z/n), we have H0(C,Z/n) = H0(OC,S ,Z/n) = (Z/n)N by the exactness of
the direct limit functor.

We claim H1
S(OC,S ,Z/n) is a finite free Z/n-module. For by (4.5), for each z ∈ S

we have an exact sequence

0 −→ H0(κ(z),Z/n) −→ H0(Ki,z,Z/n)⊕H0(Kj,z,Z/n) −→ H1
z(O

h
C,z,Z/n)→ 0

This shows H1
z(O

h
C,z,Z/n) ' Z/n, and since H1

S(OC,S ,Z/n) is a finite direct sum of
these groups, it is a finite free Z/n-module, of rank |S| = E.

The result [14, 27.1] implies that a free Z/n-submodule of a Z/n-module is a
direct summand. Therefore we have a decomposition

H0(κ(C),Z/n) ' im(φ1)⊕ im(φ2)

and since H0(κ(C),Z/n) is a finite free Z/n-module, im(φ2) is a finite free Z/n-
module by the structure theorem for finitely generated abelian groups. Similarly,
since H1

S(OC,S ,Z/n) is a finite free Z/n-module,

H1
S(OC,S ,Z/n) ' im(φ2)⊕ cok(φ2)
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and since im(φ2) and H1
S(OC,S ,Z/n) are finite free Z/n-modules, so is cok(φ2).

Since H1(OC,S ,Z/n) is a Z/n-module, cok(φ2) is a direct summand of H1(OC,S ,Z/n),
again by [14, 27.1]. Thus we have a decomposition

H1(OC,S ,Z/n) ' cok(φ2)⊕ im(φ4)

Now we set Γ = im(φ4), and compute rk(cok(φ2)) = N+|S|−m = N+E−V = βC .
This proves the q = 1 part of (b).

The q = 0 case of (b) is in the proof of Lemma 4.2. Suppose q = 2. To
show H2(OC,S , µn) → H2(κ(C), µn) is injective, we will show H1(κ(C), µn) →
H2
S(OC,S , µn) is onto and apply the exactness of (4.3).

For each closed point z ∈ C1 ∩ C2 ⊂ S, we have a diagram

H1(κ(C1), µn)⊕H1(κ(C2), µn) //

��

H2
z(O

h
C,z, µn)

0 −→ H1(κ(z), µn) // H1(κ(C1)z, µn)⊕H1(κ(C2)z, µn) // H2
z(O

h
C,z, µn) −→ 0

We will show that H1(κ(C1), µn)⊕H1(κ(C2), µn)→ H2
z(O

h
C,z, µn) is onto, by show-

ing the downarrow is onto. Since z is a regular point of each Ci, each OCi,z is a
discrete valuation ring with residue field κ(z) and fraction field κ(Ci), and we have
a diagram of split short exact sequences

0 // H1(OCi,z, µn) //

��

H1(κ(Ci), µn) //

��

H0(κ(z),Z/n) // 0

0 // H1(Oh
Ci,z, µn) // H1(κ(Ci)z, µn) // H0(κ(z),Z/n) // 0

To show the middle downarrow is onto it suffices (by a standard diagram chase)
to prove that the left downarrow is onto. Since Oh

Ci,z is henselian H1(Oh
Ci,z, µn) =

H1(κ(z), µn), and by Kummer theory and Hilbert 90 we have H1(OCi,z, µn) =

O∗Ci,z/n and H1(κ(z), µn) = κ(z)∗/n. Since OCi,z → κ(z) is onto and OCi,z is
local, the induced map O∗Ci,z → κ(z)∗ is onto, hence H1(OCi,z, µn) maps onto
H1(κ(z), µn). We conclude H1(κ(Ci), µn)→ H1(κ(Ci)z, µn) is onto. Now each map
H1(κ(C1), µn)⊕H1(κ(C2), µn)→ H2

z(O
h
C,z, µn) is onto.

Suppose (bz)z∈S ∈ H2
S(OC,S , µn) =

⊕
z∈S H

2
z(O

h
C,z, µn). We have just seen that

for each closed point z ∈ Ci ∩ Cj there exists a pair ((ai,z), (aj,z)) ∈ κ(Ci)
∗/n ⊕

κ(Cj)
∗/n mapping to bz, for elements ak,z ∈ OCk,z, for k = i, j. Let vk,z be the

discrete valuation on κ(Ck) determined by z. By standard approximation (e.g. [29,
XII.1.2]) there exist elements ak ∈ κ(Ck) such that vk,z(ak−ak,z) > vk,z(ak,z) for all
z. The image of ak in κ(Ck)∗z/n is then (ak,z), since the group U

(1)
z = {u ∈ κ(Ck)∗z :

vk,z(u − 1) > 0} is an n-divisible subgroup of the unit group of the henselian field
κ(Ck)z. Therefore them-tuple ((ak))k ∈

⊕m
k=1 H

1(κ(Ci), µn) = H1(κ(C), µn) maps
to (bz). This proves the induced map H1(κ(C), µn) → H2

S(OC,S , µn) is onto, and
completes the proof. �

We will soon need the following technical lemma in order to replace X0 with C.
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Lemma 4.8. Suppose A is a noetherian ring. Then the natural map (FracA)red →
Frac (Ared) is an isomorphism if and only if A has no embedded primes.

Proof. Let f : A → Ared = A/NA be the natural map, where NA is the nilradical
of A, let S = A−

⋃
AssA p, where AssA is the set of associated primes of A, and let

T = A−
⋃

MinA p, where MinA is the set of minimal primes of A. Then S is the set
of non zero-divisors of A, S ⊂ T , and since Min(Ared) = Ass(Ared), f(T ) is the set
of non zero-divisors of Ared (see e.g. [4, Chapter 4]).

We have (FracA)red = (S−1A)red = S−1A/NS−1A by definition, and the latter
is S−1A/S−1NA = f(S)−1Ared by [4, 3.12]. Since Frac (Ared) = f(T )−1Ared and
f(S) ⊂ f(T ), we have a natural map

(FracA)red = f(S)−1Ared −→ f(T )−1Ared = Frac (Ared)

By [4, Exercise 3.8(v)] this is an isomorphism if and only if every prime ideal of
Ared that meets f(T ) also meets f(S). Since every prime of A is the preimage of its
image under f , the latter condition is equivalent to: Every prime of A that meets T
also meets S. Every prime that meets T also meets S if and only if AssA ⊂

⋃
MinA p,

if and only if AssA ⊂ MinA, by prime avoidance ([4, 1.11]). Since always AssA ⊃
MinA, we conclude that we have an isomorphism (FracA)red

∼−→ Frac (Ared) if and
only if MinA = AssA, i.e., A has no embedded primes. �

Theorem 4.9. Assume the setup of (2.4). Then for q ≥ 0 there is a map λ :
Hq(OC,S ,Λ)→ Hq(F,Λ) and a commutative diagram

(4.10) Hq(OC,S ,Λ)
λ //

res
��

Hq(F,Λ)

res
��

Hq(κ(C),Λ)
inf // Hq(FC ,Λ)

such that if αC ∈ Hq(OC,S ,Λ) and α = λ(αC) then:

a) α is defined at the generic point of each Ci, and α(Ci) = ακ(Ci) = (αC)κ(Ci).
b) The ramification locus of α (on X) is contained in DS .
c) If D ∈ DS is prime and z = D ∩ C, then ∂D · λ = inf κ(z)|κ(D) · ∂z.
d) If αC is unramified at a closed point z, and D is any (horizontal) prime lying

over z, then α is unramified at D, and has value α(D) = inf κ(z)|κ(D)(αC(z)).

Proof. Let DC be an effective divisor on C that avoids S, let D ∈ DS be the
distinguished lift of DC , set U = X −D, and set UC = C −DC . We will say such
U are distinguished. Since X and D are regular and D has pure codimension 1, we
have H0(X) ' H0(U), and an exact Gysin sequence

0 −→ H1(X) −→ H1(U)
∂D−−−→ H0(D,−1) −→ H2(X) −→ · · ·

by Gabber’s absolute purity theorem ([15, Theorem 2.1.1]) and the standard con-
struction of the Gysin sequence ([12, Section 3.2]). (Note that the result in [15] is
stated for the Λ = Z/n case only, but the result holds in general since the sheaves
H q
D(X) and H q

D(X,Z/n) are locally isomorphic, and the morphism i∗Λ(−1) →
H 2
D(X) is canonical, where i : D → X stands for the closed immersion.) We use

the notation ∂D since this map is compatible with the one defined above on Hq(F )
when D is prime.
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We may replace X0 by C = X0,red in the cohomological computations below
since Λ is finite and n is prime-to-p, by [33, V.2.4(c)] (see also [33, II.3.11]). To
substitute OC,S and κ(C) for OX0,S and κ(X0) we must check that the former are
the canonical reduced quotients of the latter. But the ring OX0,S can by obtained
by localizing some affine open subset SpecA0 containing S (which exists since X0/k
is projective) with respect to the multiplicative set T = A0 −

⋃
z∈S mz. Since OC,S

is obtained by localizing A0,red with respect to the image of T in A0,red, we have
OC,S = (OX0,S)red since the formation of the nilradical commutes with localization
(see e.g. [4, 3.12]).

To show κ(C) = κ(X0)red it suffices to show X0 has no embedded points by
Lemma 4.8. But if z is any closed point of X then OX,z is a regular local ring, and
a local equation for the closed fiber Spec (OX,z ⊗R k) passing through z is given by
the uniformizer p in R. Since OX,z is factorial and at most two components of X0

pass through z we have p = uπe11 π
e2
2 for u ∈ O∗X,z, primes πi, and numbers ei ≥ 0.

The associated primes of OX,z/(uπe11 π
e2
2 ) are evidently just the (πi), which shows

X0 has no embedded point at z.

Since DC is a disjoint union of regular closed points, by (4.7) and the work that
immediately precedes it we have H0(C) ' H0(UC) and an exact sequence

0 −→ H1(C) −→ H1(UC)
∂DC−−−−→ H0(κ(DC),−1) −→ H2(C) −→ · · ·

Thus we have a commutative ladder

0 // H1(X) //

��

H1(U)
∂D //

��

H0(D,−1) //

��

H2(X) //

��

· · ·

0 // H1(C) // H1(UC)
∂DC // H0(DC ,−1) // H2(C) // · · ·

Since R is complete, Hq(X) → Hq(C) and Hq(D,−1) → Hq(DC ,−1) are isomor-
phisms for q ≥ 0 by proper base change ([33, VI.Corollary 2.7]). Therefore, in light
of the isomorphisms in degree zero and the 5-lemma in degree q ≥ 1, we obtain
isomorphisms

Hq(U)
∼−→ Hq(UC)

for q ≥ 0. Taking the limit over all UC = C−DC (containing S) and corresponding
U = X −D for D ∈ DS lying over DC yields an isomorphism

(4.11) lim−→Hq(U)
∼−→ lim−→Hq(UC) = Hq(OC,S)

On the other hand, for each distinguished U we have a map Hq(U)→ Hq(F ), hence
a map lim−→Hq(U)→ Hq(F ). Composing with the inverse of (4.11) yields our lift

λ : Hq(OC,S) −→ Hq(F )

Applying cohomology to the commutative diagram

UC // U SpecFoo

Specκ(Ci) //

OO

SpecOFCi

OO

SpecFCi

OO

oo
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yields a commutative diagram

Hq(UC)

��

Hq(U)

��

// Hq(F )

��
Hq(κ(Ci)) Hq(OFCi )

// Hq(FCi)

Taking the limit again over UC and U yields the diagram (4.10). If αC ∈ Hq(OC,S)
and α = λ(αC) then since each U contains S and the generic points of the Ci,
α is defined at these points, and the formula α(Ci) = resOC,S |κ(Ci)(αC) follows
immediately from (4.10). Since the restriction map Hq(OX,κ(Ci)) → Hq(κ(Ci))
factors through Hq(OFCi ), we have α(Ci) = ακ(Ci). This proves (a).

If D is a horizontal prime divisor not in DS , then the generic point Specκ(D)
is contained in each distinguished U , hence lim−→Hq(U) → Hq(FD) factors through
Hq(OFD ), which shows ∂D · λ = 0. Thus the ramification locus of any element in
the image of λ must be contained in DS , proving (b). Now if D ∈ DS is prime and
z = D ∩C then D is the prime spectrum of a complete local ring with residue field
κ(z), and the isomorphism

Hq−1(D,−1)
∼−→ Hq−1(z,−1) = Hq−1(κ(z),−1)

is the standard identification. Thus the formula ∂D ·λ = inf κ(z)|κ(D) ·∂z is immediate
by the commutative ladder of Gysin sequences above and the compatibility of ∂D
with the residue map on Hq(F ), proving (c).

Suppose α = λ(αC) has ramification locus Dα, then Dα ∈ DS . Set U = X −Dα

and UC = U ∩ C = C − DαC . If αC is unramified at a point z, i.e., z ∈ UC ,
then α is unramified at every prime divisor D lying over z. For if D ∈ DS then
∂D(α) = inf (∂z(αC)) by the formula just proved, and if D 6∈ DS then ∂D(α) = 0
since Dα ∈ DS . Thus if αC is unramified at z, and D is a prime divisor lying over
z, then U contains z and Specκ(D), hence U ⊃ D. The maps z = Specκ(z)→ UC
and D → U then induce a commutative diagram

Hq(U)
res //

res
��

Hq(D)
res //

res
��

Hq(κ(D))

Hq(UC)
res // Hq(z)

inf

99

Both vertical down-arrows are isomorphisms by the commutative ladder. The in-
verse of the left one is λ by definition, and the composition of the inverse of the right
one and the restriction Hq(D)→ Hq(κ(D)) is inflation, as shown. The top compo-
sition of horizontal restrictions factors through the restriction Hq(U)→ Hq(ÔX,D)

and the bottom factors through the restriction Hq(UC) → Hq(ÔC,z). Since these
are restriction maps, the images of α and αC are the values α(D) and αC(z). We
conclude inf κ(z)|κ(D)(αC(z)) = α(D), as in (d). �

Lemma 4.12. Assume the setup of (2.4), let D ∈ DS , and suppose ρ : Y → (X,D)
is a tamely ramified cover. Then there is a map λY : Hq(OCY ,SY ,Λ)→ Hq(K(Y ),Λ)
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inducing a commutative diagram

Hq(OCY ,SY ,Λ)
λY // Hq(K(Y ),Λ)

Hq(OC,S ,Λ)

res

OO

λ
// Hq(F,Λ)

res

OO

Proof. Since ρ : Y → (X,D) is a tamely ramified cover, Y/R is a regular relative
curve, each irreducible component of CY = (Y0)red is regular, and exactly two
irreducible components of CY meet at each singular point z ∈ SY , all by Lemma 3.1.
Thus Y/R satisfies the hypotheses of (2.4), and we have the map λY by Theorem 4.9,
which is defined relative to the set of distinguished divisors DY as in Lemma 3.1(c).

Let UC ⊂ C be any open set containing S, set D′C = C − UC , and let D′ ∈ DS
be the distinguished divisor lying over D′C . Then let U = X −D′, V = Y ×X U ,
and VC = UC ×U V . Then we have a commutative diagram

VC //

ρ

��

V

ρ

��
UC // U

Since SY = ρ−1S, V and VC contain SY , and applying cohomology yields a com-
mutative diagram

Hq(OCY ,SY ) lim−→Hq(V ′C)
∼ // lim−→Hq(V ′)

&&
lim−→Hq(VC)

can

OO

lim−→Hq(V )
∼oo

can

OO

// Hq(K(Y ))

Hq(OC,S)

res

OO

lim−→Hq(UC)

res

OO

lim−→Hq(U)
∼oo

res

OO

// Hq(F )

res

OO

where V ′ runs over all open subsets of Y containing SY , and V ′C = V ′ ×X C. This
yields the diagram of the lemma. �

4.13. Since X is noetherian each f ∈ F ∗ defines a divisor div f =
∑
vD(f)D, where

the (finite) sum is over prime divisors on X. By weak approximation [40, Lemma]
there exists a π ∈ F such that

divπ = C +H

where H is horizontal and avoids any finite (preassigned) set of points F . We fix
such a π for F containing S. Since vCi(π) = 1 for each i, the choice of π determines
a noncanonical Witt decomposition

Hq(κ(C),Λ)⊕Hq−1(κ(C),Λ(−1))
∼−→ Hq(FC ,Λ)

taking (αC , θC) to αC + (π) · θC , where αC and θC are inflated from κ(C) to FC ,
(π) is the image of π in H1(FC , µn), and (π) · θ is the cup product. Composing this
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map with the natural maps Hq(OC,S ,Λ)→ Hq(κ(C),Λ) and Hq−1(OC,S ,Λ(−1))→
Hq−1(κ(C),Λ(−1)) yields a homomorphism

ηπ : Hq(OC,S ,Λ)⊕Hq−1(OC,S ,Λ(−1)) // Hq(FC ,Λ)

defined by ηπ(αC , θC) = αC + (π) · θC .

Corollary 4.14. The choice of DS and π determines for q ≥ 1 a homomorphism

λ : Hq(OC,S ,Λ)⊕Hq−1(OC,S ,Λ(−1)) −→ Hq(F,Λ)

by the rule λ(αC + (π) · θC) = λ(αC) + (π) · λ(θC), resulting in a commutative
diagram

Hq(F,Λ)

resF |FC
��

Hq(OC,S ,Λ)⊕Hq−1(OC,S ,Λ(−1))

λ

44

ηπ
// Hq(FC ,Λ)

If D ∈ DS and ρ : Y → (X,D) is a tamely ramified cover then we have a commu-
tative diagram

Hq(OCY ,SY ,Λ)⊕Hq−1(OCY ,SY ,Λ(−1))
λY // Hq(K(Y ),Λ)

Hq(OC,S ,Λ)⊕Hq−1(OC,S ,Λ(−1))

res

OO

res

OO

λ
// Hq(F,Λ)

res

OO

where λY is defined using DSY , π, and Lemma 4.12.

Proof. This is an immediate consequence of Theorem 4.9 and Lemma 4.12. �

Remark 4.15. If X/R is smooth, then S is empty, and OC,S = κ(C). The map ηπ
is then an isomorphism, and incorporating it into λ we obtain a map

λ : Hq(FC ,Λ) −→ Hq(F,Λ)

that splits the restriction map. This is the map of [10]. Note however that Corol-
lary 4.14 does not imply a well defined map im(ηπ) → Hq(F,Λ). In fact there is
an obstruction, at least part of which lies in the prospect of nontrivial elements of
im(λ) ≤ Hq(F,Λ) that are trivial at κ(C). We discuss the q = 1 case in (4.16).

4.16. Completely Split Elements. In [36, 2.1] Saito defines a completely split
covering of a noetherian scheme X to be a finite étale cover Y → X such that
Y ×X Specκ(x) =

∐
Specκ(x), for all closed points x ∈ X. We abuse Saito’s termi-

nology (see Remark(4.18) below) and in the setup of (2.4) denote by H1
cs(C,Λ) the

kernel of the map H1(OC,S ,Λ)→ H1(κ(C),Λ), so that we have an exact sequence

0 −→ H1
cs(C,Λ) −→ H1(OC,S ,Λ) −→ H1(κ(C),Λ)

Then H1
cs(C,Λ) ≤ H1(C,Λ): For if β ∈ H1

cs(C,Λ) then ∂z(β) = 0 for all closed
points z ∈ C − S since ∂z factors through κ(Ci)z. Therefore β is defined on C,
and since H1(C,Λ) ≤ H1(OC,S ,Λ) by Lemma 4.6(a), H1

cs(C,Λ) ≤ H1(C,Λ), as
claimed. Let H1

cs(X,Λ) denote the preimage of H1
cs(C,Λ) under the proper base

change isomorphism H1(X,Λ)
∼−→ H1(C,Λ).



FORMAL CONSTRUCTIONS IN THE BRAUER GROUP 17

Proposition 4.17. Assume the setup of (2.4). Then elements of H1
cs(C,Λ) are

trivial at all points of C, and the nontrivial elements of H1
cs(X,Λ) are trivial at all

points of X except for the generic point SpecF , where they are nontrivial.

Proof. Suppose βC ∈ H1
cs(C). Then βC is trivial at each generic point of C by

definition of H1
cs(C). If z ∈ C is a closed point lying on the irreducible component

Ci then the map H1(C) → H1(κ(z)) factors through H1(Ci). Since Ci is regular
the map H1(Ci)→ H1(κ(Ci)) is injective by purity, and consequently βC(z) = 0 by
definition. Thus the elements of H1

cs(C) are trivial at all points of C.

Suppose β = λ(βC) ∈ H1
cs(X). If x ∈ X is a generic point of some irreducible

component Ci of C then the image of β in H1(κ(Ci)) is zero since the map H1
cs(X)→

H1(κ(Ci)) factors through H1
cs(C). If x is the generic point of a horizontal divisor

D with closed point z then β(D) = inf κ(z)|κ(D)(βC(z)) by Theorem 4.9(d), and this
is zero since βC(z) = 0. If z is a closed point of X then z is on C, and the map
H1

cs(X) → H1(κ(z)) factors through H1
cs(C), hence β is trivial at z. Finally, since

X is a regular noetherian scheme the map H1(X) → H1(F ) is injective by purity,
hence β is nontrivial at the generic point of X. �

Remark 4.18. Proposition 4.17 shows the elements of H1
cs(C,Z/n) are completely

split in the sense of [36], since they are split at all closed points. However, H1
cs(C,Z/n)

does not contain elements that are split at all closed points but nontrivial at generic
points of C. Such elements do not exist if k is finite, as shown by Saito in [36, The-
orem 2.4], since then the Ci have no nontrivial completely split covers, essentially
by Cebotarev’s density theorem (see [35, Lemma 1.7]).

5. Applications in the Brauer Group

5.1. Cyclic Covers. If U is any scheme, and ū is a geometric point, the fiber
functor defines a category equivalence between (finite) étale covers of U and finite
continuous π1(U, ū)-sets, yielding a canonical isomorphism

(5.2) H1(U,Z/n) ' H1(π1(U, ū),Z/n) = Homcont(π1(U, ū),Z/n)

(see [13, I.2.11]). If θ ∈ H1(U,Z/n), we will write U [θ] for the finite cyclic étale cover
determined by θ. If U = SpecA is affine, we will write A[θ] for the corresponding
ring, or A(θ) if A is a field. If U is a connected normal scheme, and θ ∈ H1(U,Z/n)
has order m, then U [θ] is a disjoint sum of n/m connected Z/m-Galois covers of U .

If V → U is a morphism and v̄ is a geometric point of V (hence of U), base ex-
tension defines a homomorphism π1(V, v̄)→ π1(U, v̄), inducing the restriction map
H1(U,Z/n) → H1(V,Z/n) via (5.2). If θ ∈ H1(U,Z/n) maps to θV ∈ H1(V,Z/n)
then U [θ]×U V = V [θV ].

In the setup of (2.4), if U ⊂ X is an open subscheme then since X is excellent
and regular, the map H1(U,Z/n) → H1(F,Z/n) is injective (see e.g. the proof of
[12, Corollary 3.4.2]). Thus if θ ∈ H1(F,Z/n) and θ is defined on U ⊂ X then
we may view θ as an element of H1(U,Z/n). Then U [θ] ×U SpecF = SpecF (θ),
and since U [θ]→ U is étale, F (θ) is the total fraction ring of U [θ], and U [θ] is the
normalization of U in SpecF (θ).
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Lemma 5.3. Assume the setup of (2.4). Suppose θC ∈ H1(OC,S ,Z/n) has rami-
fication divisor DC on C, θ = λ(θC), D ∈ DS is the distinguished lift of DC , and
Y is the normalization of X in F (θ). Then ρ : Y → (X,D) is a tamely ramified
cover whose restriction to C is a tamely ramified cover ρC : CY → (C,DC), and
OCY ,SY = OC,S [θC ].

Proof. The lift θ is tamely ramified with respect to D by Theorem 4.9. If θ ∈
H1(F,Z/n), v is any valuation on F , and w is an extension of v to F (θ), then the
ramification index e(w/v) equals |∂v(θ)|, by e.g. [16, Chapter II]. Therefore, since
X is regular, ρ : Y → (X,D) is a tamely ramified cover by Lemma 3.2.

Let U = X−D, V = U×X Y , UC = U×XC ⊂ C and VC = V ×U UC ⊂ CY . The
construction of the map λ in (4.11) shows that θC and θ may be viewed as elements
of H1(UC ,Z/n) and H1(U,Z/n), respectively, and resU |UC (θ) = θC . Since Y is the
normalization of X in F (θ), V is the normalization of U in F (θ), hence V = U [θ].
Since resU |UC : H1(U,Z/n)→ H1(UC ,Z/n) is induced on covers by base change, we
conclude VC = V ×U UC = UC [θC ]. Now if U ′C ⊂ UC is any open set containing S
then we may view θC as an element of H1(U ′C ,Z/n), and V ′C = VC×UCU ′C = U ′C [θC ].
Taking the limit over all such U ′C yields the ring OC,S [θC ], and since SY = ρ−1S,
this is OCY ,SY by [4, Exercise 3.8] (observe that SpecOCY ,SY = SpecOC,S ×C CY ).

The map CY → C induced by Y → X is finite and étale over UC = C − DC

by base change. Each irreducible component of CY is regular by Lemma 3.1, and
dominates an irreducible component of C, hence CY → (C,DC) is a totally ramified
cover by the definition in (2.3). This completes the proof. �

5.4. Index. Let π ∈ F and ηπ be as in (4.13), with q = 2. Let δC = αC +(π) ·θC be
in H2(FC , µn), and let δCi = αCi + (π) · θCi be the image of δC in H2(FCi , µn).
By the (well-known) Nakayama-Witt index formula we have ind(δCi) = |θCi | ·
ind(αCi,κ(Ci)(θCi )

). Define

ind(αC , θC) = lcmi{ind(δCi)}

Theorem 5.5. Assume the setup of (2.4) with R = Zp, and let λ be the map of
Corollary 4.14. Then ind(λ(αC , θC)) = ind(αC , θC).

Proof. We adopt the notation of (5.4), and set δ = λ(αC , θC), α = λ(αC), and
θ = λ(θC), so that δ = α+ (π) · θ. By primary decomposition we may assume n is
a power of a prime `. In Corollary 4.14 we have defined for every X/Zp satisfying
the setup of (2.4) a map λ : H2(OC,S , µn)⊕H1(OC,S ,Z/n) −→ H2(F, µn), which is
constructed relative to π and DS .

To show that λ preserves index, we proceed by induction on ind(αC , θC). Assume
first that ind(αC , θC) = 1, i.e., that all αCi , θCi are trivial. Then θC ∈ H1

cs(C,Z/n)
and θ ∈ H1

cs(X,Z/n) by (4.16), and αC = 0 by Lemma 4.6, hence α = 0. To show
that δ = (π) · θ is trivial we compute ramification:

∂D((π) · θ) = vD(π) · θFD − (π) · ∂D(θ) + (−1) · vD(π) · ∂D(θ)

Since θ ∈ H1
cs(X,Z/n), ∂D(θ) = 0 and θFD = 0 by Proposition 4.17, hence ∂D((π) ·

θ) = 0, as desired.
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Now assume ind(αC , θC) = N > 1, and that λ preserves index on elements of
`-power index less than N . Note this hypothesis applies to any X satisfying the
setup of (2.4). We construct a tamely ramified cover ρ : Y → X of degree ` as
follows. Set φCi = (|θCi |/`)θCi ∈ H1(κ(Ci),Z/`) if θCi 6= 0, and otherwise use
Grunwald-Wang’s theorem to produce an element φCi ∈ H1(κ(Ci),Z/`) of order `
such that φCi,z 6= 0 whenever ∂z(αCi) 6= 0, and if z ∈ S is on Ci∩Cj , φCi,z = θCj ,z.
Then there exists an element φC = (φCi)i ∈ H1(OC,S ,Z/`) by Lemma 4.2, and we
obtain an element φ = λ(φC) ∈ H1(F,Z/`). Let ρ : Y → X be the normalization
of X in F (θ), a tamely ramified cover by Lemma 5.3. Then Y/Zp satisfies (2.4) by
Lemma 3.1.

We claim ind(αCY , θCY ) = `−1ind(αC , θC). By Lemma 5.3 we have κ(CY ) =
κ(C)(φC), and in particular κ(Ci,Y ) = κ(Ci)(φCi) is a field. Since π has multiplicity
one at each irreducible component of CY by Lemma 3.1, we compute

ind(δCi,Y ) = |(θCi)κ(Ci)(φCi )|ind((αCi,κ(Ci)(θCi )
)κ(Ci)(φCi ))

By construction, restriction of each nonzero δCi to κ(Ci)(φCi) either lowers the
order of θCi by `, if θCi 6= 0, or otherwise, since κ(Ci) is a global field, lowers
the index of αCi,κ(Ci)(θCi ) by ` (by the local-global splitting principle in class field
theory). Therefore ind(δCi,Y ) = `−1ind(δCi), hence

ind(αCY , θCY ) = `−1ind(αC , θC)

This proves the claim.

Since Y satisfies (2.4) we have ind(λY (αCY , θCY )) = ind(αCY , θCY ) by the induc-
tion hypothesis, and λY (αCY , θCY ) = λ(αC , θC)K(Y ) by the commutative diagram
of Lemma 4.12. Therefore ind(λ(αC , θC)K(Y )) = `−1ind(αC , θC), hence

ind(λ(αC , θC)) ≤ [K(Y ) : F ]ind(λ(αC , θC)K(Y )) = ` · `−1ind(αC , θC) = ind(αC , θC)

On the other hand, λ(αC , θC)FCi = δCi has index ind(αC , θC) for some i by defini-
tion, hence ind(λ(αC , θC)) ≥ ind(αC , θC). Therefore we have equality, proving the
theorem. �

Though we do not know how to lift all of H2(FC , µn) to H2(F, µn), we now have
the following.

Corollary 5.6. Assume the setup of Theorem 5.5. Let G2
π ≤ H2(FC , µn) denote

the image of ηπ in (4.13). Then G2
π ' H2(OC,S , µn)⊕Γ, where Γ ≤ H1(OC,S ,Z/n)

is as in Lemma 4.6, and the map λ of Corollary 4.14 factors through H2(FC , µn)
to induce an injection

λ : G2
π −→ H2(F, µn)

that preserves index and splits the restriction resF |FC .

Proof. We have ker(ηπ) = H1
cs(C,Z/n) by Lemma 4.6(b), hence in the notation of

Lemma 4.6 we have an isomorphism H2(OC,S , µn)⊕ Γ ' G2
π. Since λ(ker(ηπ)) = 0

by the base case of the induction in Theorem 5.5, we have an induced map λ :
G2
π −→ H2(F, µn); it preserves index by Theorem 5.5, and splits the restriction

map by the commutative diagram in Theorem 4.9. �
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6. Noncrossed Products and Indecomposable Division Algebras

We apply Theorem 5.5 to prove the existence of noncrossed product and indecom-
posable division algebras over the function field F of any p-adic curve. Noncrossed
products over K(t) for K a local field were first constructed in [8], and then con-
structed more systematically over the function field of a smooth relative Zp-curve
in [10]. Indecomposable division algebras of unequal period and index were also
constructed in [10], over the same types of fields. Modulo gluing, the method we
use below is the same as the one used in [10, Theorem 4.3, Corollary 4.8]. We first
present some background; for additional discussion, see e.g. [5], [2], or [38].

Let Z2(GF , F ∗sep) denote the group of continuous Galois 2-cocycles. For each f
there exists a unique maximal open normal subgroup U/ GF such that f(sU, tU) =
f(s, t) for all s, t ∈ GF . If L/F is the finite Galois extension with group G = GF /U ,
then f is inflated from Z2(G,L∗), and f defines a central simple F -algebra Af of
degree [L : F ] via the the crossed product construction:

Af =
∑
s∈G

Lus : usut = f(s, t)ust, usx = s(x)us, ∀x ∈ L

Here the us’s are formal basis elements indexed by G. Let CSA(F ) be the set of F -
isomorphism classes of central simple F -algebras. The assignment f 7→ Af defines
a set map

ρ : Z2(GF , F ∗sep) −→ CSA(F )

It can be shown that L is a maximal commutative (étale) subalgebra of Af , and we
define a crossed product to be any central simple F -algebra with a Galois maximal
commutative étale subalgebra. The crossed product problem over F is to determine
whether every central simple F -algebra is a crossed product. In particular the
problem is to determine whether every F -division algebra is a crossed product, or,
in other words, whether there exist noncrossed product F -division algebras. It was
long believed that all central simple algebras were crossed products, until Amitsur
discovered noncrossed products in [1]. The set map ρ induces a surjective group
homomorphism Z2(GF , F ∗sep) → Br(F ) with kernel B2(GF , F ∗sep), giving the well-
known isomorphism

H2(GF , F ∗sep)
∼−→ Br(F )

It follows by Wedderburn’s theorem that for every F -division algebra D there exists
a number r such that Mr(D) is a crossed product.

We say an F -division algebra D is indecomposable if it does not properly contain
a nontrivial F -subalgebra that is also central over F , or equivalently if it is not
an F -tensor product of two nontrivial F -division algebras. It is not hard to show
that all division algebras of composite period are decomposable into their primary
components, and that all division algebras of equal prime-power period and index
are indecomposable. The first indecomposable division algebras of unequal prime-
power period and index appeared in [3] and in [37]. These results showed that
decomposability does not fully “account” for the phenomenon of unequal period
and index in division algebras.

Theorem 6.1. Let F/Qp be a finitely generated field extension of transcendence
degree one. Let X/Zp be a regular relative curve with function field F , let C1 be
a reduced irreducible component of the closed fiber, let ` 6= p be a prime, and let r
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and s be numbers that are maximal such that µ`r ⊂ κ(C1) and µ`s ⊂ κ(C1)(µ`r+1).
Then there exist noncrossed product F -division algebras of period and index as low
as `s+1 if r = 0, and `2r+1 if r 6= 0.

Proof. We may assume (without changing r and s) that C has regular irreducible
components, at most two of which meet at any closed point of X. The idea is to
use the (known) existence of such algebras over FC1

to produce a class in G2
π, and

then apply Corollary 5.6 to prove existence over F .

By [10, Theorem 4.7], if F admits a smooth model X then there exist noncrossed
product division algebras over FC of period and index as low as `s+1 if r = 0, and
`2r+1 if r > 0. The resulting Brauer class has the form αC + (π) · θC ∈ H2(FC , µn),
where αC ∈ H2(κ(C), µn) and θC ∈ H1(κ(C),Z/n). A look at the construction,
which proceeds exactly as in [6, Theorem 1], shows we may pre-assign values at any
finite set of points of C. Thus we may produce a noncrossed product FC1

-division
algebra DFC1

with class δC1 = αC1 + (π) · θC1 of the desired period and index, such
that αC1,z = 0 and θC1,z = 0 at all z ∈ S ∩ C1. Set αCi = 0 and θCi = 0 for
i > 1. Then αC = (αCi)i ∈ H2(OC,S , µn) and θC = (θCi)i ∈ H1(OC,S ,Z/n) by
Lemma 4.2, and we have an element

δC = αC + (π) · θC ∈ G2
π ≤ H2(FC , µn)

whose restriction to FC1 is δC1 . Then δC lifts to δ = λ(δC) ∈ H2(F, µn), and
ind(δ) = ind(δC) = ind(δC1

) by Corollary 5.6 and the definition of index over κ(C).
Let D be the F -division algebra associated to δ. Since resF |FC1

(δ) = δC1
(also by

Corollary 5.6) and ind(δ) = ind(δC1
), D ⊗F FC1

is the (noncrossed product) FC1
-

division algebra DFC1
associated to δC1 . If L/F is a Galois maximal subfield of D

then L ⊗F FC1
/FC1

is a Galois maximal subfield of DFC1
by degree count. Since

DFC1
is a noncrossed product this would be a contradiction, and we conclude D

has no Galois maximal subfields. Therefore D is a noncrossed product F -division
algebra. �

Theorem 6.2. Let F/Qp be a finitely generated field extension of transcendence
degree one, and let ` 6= p be a prime. Then there exist indecomposable F -division
algebras of (period,index)= (`a, `b), for any numbers a and b satisfying 1 ≤ a ≤ b ≤
2a− 1.

Proof. Let X, C, Ci, and S be as in (2.4). The construction over FC1 proceeds
exactly as in [10, Proposition 4.2] and [7], and we obtain an indecomposable FC1

-
division algebra DFC1

of (period,index)= (`a, `b), for any numbers a and b satisfying
1 ≤ a ≤ b ≤ 2a − 1. The division algebra DFC1

is associated to a class δC1
=

αC1
+ (π) · θC1

∈ H2(FC1
, µn). The construction of [10] allows us to assume the

components αC1
and θC1

are zero at the singular points S∩C1, so that by Lemma 4.2
we obtain a class δC = αC + (π) · θC in G2

π ≤ H2(FC , µn) whose first component is
δC1

= αC1
+ (π) · θC1

, and whose other components are zero. This class lifts to a
class δ = λ(δC), and ind(δ) = ind(δC) and δC = resF |FC (δ) by Corollary 5.6, hence
ind(δ) = ind(δC1) and δC1 = resF |FC1

(δ) by definition of index and Brauer class
over FC . Let D be the F -division algebra associated to δ. Since ind(δ) = ind(δC1

)
D ⊗F FC1

is isomorphic to the FC1
-division algebra DFC1

associated to δC1
. If D

is decomposable then D ' D1⊗F D2 for nontrivial F -division algebras D1 and D2,
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hence DFC1
= (D1)FC1

⊗FC1
(D2)FC1

is a decomposition of DFC1
. Since DFC1

is a
division algebra, both factors (Di)FC1

are nontrivial, hence DFC1
is decomposable,

a contradiction. We conclude D is indecomposable. �
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