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Abstract. The g-bracket [X], : Oc, — Oc,, which is the g-analog of the identity function,
is also a norm-preserving isometry, for each ¢ € B(l,p‘l/ (p_l)). In this paper we investigate
its fixed points. We show z € Oc, is a “nontrivial” fixed point of [X], for some ¢ if and
only if |A,_o(x)| > p~/®=1 where A, »(X) d:f(X —2)---(X = (p—1)). We then define a
surjective analytic map Q(X) : B(z, |Ap—2(x)|]) — B(q, |g — 1) such that [2']g) = 2’ for all
x’ € B(x,|Ap—2(x)|), which is a contraction if and only if the residue Z is not a “double point”,
if and only if Az(gl_)Z(i‘) # 0. The nontrivial pairs (z,¢q — 1) such that [z], = = form a manifold
whose standard projections each have degree p — 2. Restricting to Z,, we find the theory to be
trivial unless p = 3, in which case Q(X) : B(0,1)UB(1,1) — B(7,1/3) UB(4,1/3) is an analytic

bijection, which is a contraction by 1/3.

I. Introduction.

We start with an example from complex analysis. Let D be the unit disk in the complex plane
C. An isometry of D is a continuous, distance-preserving map from D to D. All analytic isome-
tries of D are rotations, and preserve the complex norm. They are parameterized in a natural

27t The quotient topology

way by R/Z, with t € R/Z corresponding to the rotation p; : z — ze
on R/7Z makes the isometries into a continuous family, since for all z € D, lim;_,4, p(2) = pt, (2).
The fixed point set of this family is uninteresting, since a nontrivial rotation fixes only the origin.
A more interesting set of fixed points is provided by the larger family of analytic automorphisms

of D. By Schwarz’s Lemma, this family is continuously parameterized by R/Z x D, with (¢, zp)

2mit 20—=2

72==. A direct computation shows that
—Z0z

corresponding to the mobius transformation z +— e
an analytic automorphism has either one interior fixed point, or one boundary fixed point, or

two boundary fixed points.

This paper grew from an interest in the fixed points on the p-adic unit disk Z,. Let p be a
prime, and let Z, denote the additive group of p-adic integers. There is a continuous family of
norm-preserving isometries

Xlg:2Z, — Z,

parameterized by the elements ¢ of the topological group B(1,p~/(P=1) which is 1 +pZy if p
is odd, and 1 +4Z, if p = 2. The function [X], is called the g-bracket, and it is an interpolation
to Zj, of the arithmetic function on NU {0} given by

nlg=1+q+¢*+--+¢" "
The g-bracket is also known as the g-analog (or g-extension) of the identity function, and its

values are g-numbers. It is the canonical 1-cocycle [X], € Z'(Z,,Z,) sending 1 to 1, where
1
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Z,, is viewed as a Zp-module via the action 11 = ¢. Since ¢ is in B(1,p~Y/®=1), we have
(X, € 2Y(Z,,Z,) and [X],(mod p™) € ZY(Z/p™, Z/p").

Our results show that if p # 3, or if ¢ = 1(mod p?), then [X], has only the “trivial” fixed
points 0 and 1 in Z,. However, if p = 3, ¢ = 1(mod3), and ¢ # 1(mod9), then [X], has a
unique nontrivial fixed point in Zg for all ¢q. For example, if p = 3 and ¢ = 4, then —1/2 is the
nontrivial fixed point of [X], when ¢ = 4: [~1/2]; = —1/2. The admissible ¢ in B(1,37!/2)
form two (disjoint) balls, B(4,37!) and B(7,371), the set of nontrivial fixed points z for these q
respectively form the two balls B(1, 1) and B(0, 1), and the map Q(X) taking z to ¢ is a bijective
analytic contraction by the factor 3.

It turns out to be easier to analyze our problem in the following more general context.

Let C, denote the p-adic complex numbers. Write |—| for the metric on C,, and let O, = Oc,
denote the unit disk in C,,. Write v for the corresponding additive valuation, so that |z| = p (@),
Let B(a,r) denote the set {b € C, : [b—a| < r}. If z € O, and ¢ € B(1,p~*/®~1) then
z-logqg € x-B(0,p~/®=V) c B(0,p~/?PV), s0 ¢° = exp(xlogq) is well defined. We define

the g-bracket [X], on O, by
L g #1
2], £ { -1 ifa#

T ifg=1
As above, the g-bracket is an interpolation to O, of the g-number function on N, defined by
nly=1+q¢+q¢*+---+¢" . The g-bracket is also the canonical 1-cocycle [X], € Z'(0,,0,)
sending 1 to 1, where O, is viewed as an Op,-module via the action 1 %1 = q.

In this setting, we will show that z € Oc, is a nontrivial fixed point of [X], for some ¢

if and only if |A,_o(z)| > p~ /P~ where Ap_Q(X)d:f(X —2)---(X —(p—1)), and then

|Ap—2(z)| = |p(¢ — 1)?>7P|. The set of nontrivial pairs (x,q — 1) such that [z], = z form a
manifold whose standard projections each have degree p — 2. If [x], = z, then we have a
surjective analytic map Q(X) : B(z, |Ap_2(z)]) — B(q, |[¢ — 1|) such that [2']g,) = 2’ for all
x' € B(z, |Ap—2(z)|), and this map is a (bijective) contraction if and only if the residue Z has
multiplicity one in the fiber over ¢ — 1, if and only if Z is not a root of the polynomial A;QQ(X),
i.e., if and only if |A§,1_)2(:c)\ =1.

For reference on basic concepts see the beautiful book [G] by Gouvéa. The study of g-functions
for a general variable ¢ tending to 1 is old, and the study of g-numbers and g-identities goes back
at least to Jackson in [J]. In [F] Fray proved p-adic g-analogs of theorems of Legendre, Kum-
mer, and Lucas on ¢-binomial coefficients. The structure of the space of continuous functions
C(K,Qy), where K is a local field, was studied by Dieudonné in [D], and Mahler constructed an
explicit basis for this space in [M]. In [C] Conrad proved that the set of ¢-binomial coefficients
(which includes the g-identity function), form a basis for C(Z,,Z,). Isometries on Z, or on
locally compact connected one-dimensional abelian groups were studied in [A], [B], and [Su].

We would like to thank the referee of a previous version of this paper for suggestions that
dramatically simplified the proofs and improved the results.

II. Results.
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Notation. The letters ¢, u, and z will always denote elements of B(1,p~1/(®=1)), O;, and Oy,
respectively, and the first two will frequently be related by ¢ = 1 4+ p™°u, for some number
mo > 1/(p — 1). The capitals X,Q, and U will denote coordinate functions defined on these

sets, related to each other in a similar manner.
Proposition 1. Fiz ¢ € B(1,p~Y/®=1). Then [X]4 : Op = O, is a norm-preserving isometry.
Proof. This is clear for ¢ = 1, so assume g # 1. [X], is the composition of analytic isomorphisms

_1
0, —%£9, B(0,]q — 1)) =224 B0, g — 1)) == 0O,

a dilation by |¢ — 1], an isometry, and a contraction by |¢ — 1|. Tracing through the maps shows

[X], preserves the norm.
|

Since [X], is an isometry of the p-adic unit disk onto itself, the notion of fixed point makes

sense. Set
f(XaQ_]-): [X]Q_X

For fixed g € B(1,p~1/(P~1) the set of fixed points of [X], is the set of solutions {z : f(z,q—1) =
0}. We see that f(X,Q — 1) is analytic on O, x B(0,p~ /=1 since

FXQ-1=% (nf 1) Q-1

n=1

is in C,[[X,Q — 1]] and converges on O, x B(0,p~/(P=1)).

It is obvious that f(x,0) = 0 for all z € O,, and f(0,q — 1) = f(l,¢ — 1) = 0 for all
q—1 ¢ B(0,p~/®=1). We call these solutions trivial, and define the set of nontrivial fized

points

4 Ko =X ={(z,q—-1):[z]g==
M2V (ST ) = (a0 (e =a)

Proposition 2. The set M is a submanifold of O, x B(0,p~ /P~ If (z,q—1) € M then there
is an analytic function Q(X) in a neighborhood N of x such that g = Q(z), and (z',Q(z')—1) €
M for allz’ € N.

Proof. Let Y =Q — 1 and
a  f(X,Y)

IXY) = S XX -

We show dg does not vanish on M by showing g—g(x,y) # 0 or all (z,y) € M. Then M is a
submanifold of O, x B(0,p~ /=) by [Se, Chapter III, Section 11], and there is an analytic
function Q(x) such that (z',Q(z') — 1) € M in a neighborhood of (x,y) by the p-adic implicit
function theorem. Directly from the definition of f,

Af Xl _ XQ¥ ' —[X]g
ay  0Q Q-1
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If (z,y) € M, then (x,y) € V(f), so [z]; = z. Therefore

of

o (@) = ale ~ 1,

Since g = f/Y X (X — 1),

99 1L 9f g

oY  YX(X-1o9Y Y
By the power series expression for g we have g(X,0) = 1/2, so in particular if (z,y) € M then
y # 0, hence (¢/Y)(z,y) = 0, hence

@(m ) = 1 ﬁ(x ) = [z — 1]
ay Y T oy Y T @ —1)
Using ¢X = eX1°84, we compute
i (log )™
(g—1)n

(X 1](1 — (IOgQ)”Jrl _ n : _ — :
Therefore “5— Yoo DT (X 1)™. This has value logq/(¢ — 1) at X = 1, and if

X # 1 then it is nonzero since [X — 1], preserves the norm in O, by Proposition 1. We conclude

gf,(:z: y) # 0 for all (z,y) € M.

Definitions. Let ¢1 : M — O, and ¢ : M — B(0,p~Y/®=1) be the projections, and let
= ¢5 '(y) denote the fiber of ¢o over y € B(0,p~/®~D). We identify M, with ¢,(M,),
which is the set of nontrivial fixed points of [X],, for ¢ =1+ y.

Series A. For any z € O, and ¢ € B(Lp—l/(P—l)),

oo

(X]g =X =) cnlz,q)(X —2)"
n=0
q®logq q*(logq)" n
:([%‘]q—ﬂ?)+<q_1 ) +Z q—1n' - )

This series converges on O,. Note that since ¢y is nonzero, any fixed point can have a maximum

multiplicity of two.

Proposition 3. Ifp =2 then M = @. If p # 2, then ¢o has degree p — 2, and
po(M)={qg—1¢ B(()?pfl/(pfl)) cp V=2 < lg—1] < pfl/(pfl)}

Proof. Fix q € B(1,p~"/®=1) and let mg = v(qg — 1). For € O,, let ¢, = c,(z,q) be the

coefficient from Series A. By the p-adic Weierstrass preparation theorem [G, Theorem 6.2.6], the

number of zeros of [X],— X (in Op) is N = sup{n : v(¢,) = inf,, v(¢y,)}, counting multiplicities.
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Since {0,1} are both zeros, we know N > 2, and since M excludes these solutions, M,_1 has
cardinality N — 2. We compute N: If n > 2,

v(en) = (n — 1)mg — &Pi")
where s,(n) is the sum of the coefficients of the p-adic expansion of n. It is easy to see v(c,) >

v(cp) whenever n > p, and
(n —1)mg if2<n<p-1

) e
Thus if p =2 or mg > 1/(p — 2) then N = 2, hence My, = @. If p # 2 and mg < 1/(p — 2)
then v(cp) < v(c2), hence N = p, hence M,_; has cardinality p — 2, counting multiplicities. We
conclude ¢ has degree p — 2 for 1/(p — 1) <mg < 1/(p — 2).
|
Set Ap(X) =1, and for n > 0, set
An(X) S (X -2)(X=3) (X — (n+1))
Let Agf)(X ) denote the i-th (formal) derivative.
Series B. Set U = p~"°(Q — 1) for mg > 1/(p — 1). For any u € O, we compute
g($7Q_1):@_H1H Zd x,u)(U —u)"

where dy, (z,u) = > 72, (; )éi;)),pkmouk’". Note d,(z,0) = éfg)),p”mo

Proposition 4. Suppose p # 2. Then ¢1 has degree p — 2, and

o1(M) = {z € Op : | 4y—2(x)| > p~/®~V)
If (x,q — 1) € M, then |A,_s(z)| = p®=2™0=1 where mg = v(q — 1).
Proof. We use Series B with v = 0. Set d,, = d,(x,0). Then

s(n+2) = (n+2)
p—1

v(dy) = v(An(x)) + nmo +

and from this we read off
(%) v(d,(z,0)) = { O An{w) o %f Vsnsped
v(Ap_2(z))+(p—2)mp—1 ifn=p—2

If this series has a solution U = u € O,, then p # 2 and 1/(p —2) > mg > 1/(p — 1) by

Proposition 3. If n > p —2 and mo > 1/(p — 1), then using the fact that A,_(X) divides

A, (X), we easily compute v(d,,) — v(dp—2) > 0:

sp(n+2) = (n+2)
p—1

v(dn) = v(dp—2) = v(An(2)) = v(Ap-2(z)) + (n = (p = 2))mo + 1 +

sp(n+2)—1 >0
p—1 =
Thus the Weierstrass polynomial has nonzero degree if and only if v(d,—2) < wv(dp), ie.,

> v(An(2)) = v(Ap-2(z)) +

v(Ap_2(z)) <1—(p—2)my, in which case the degree is p — 2. For a given z this holds for some
myp in the range 1/(p —2) > mo > 1/(p — 1) if and only if v(A,_2(z)) < 1/(p — 1). Now given
x € O, such that [A,_o(x)| > p~/P=D set mg = (1— Ap_o(x))/(p—2). Then v(doy) = v(dp_2),
so that all p — 2 solutions are units u such that (z,q — 1) € M, where ¢ = 1 + p™u.

|
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Proposition 5. For each g € B(1,p~ /=) ~B(1,p~/®=2) let my = v(g—1), and let M,
denote the set of residues of the elements ¢1(p5*(q — 1)).

a) If mg<1/(p—2), Mq_l ={2,...,p—1}, and Card(M,—1) =p — 2.

b) If mo=1/(p—2), Mg—1N{2,...,p—1} =&, and Card(My_1) > p—3.
In particular, mo = 1/(p — 2) if and only if |A,—2(x)| = 1.

Proof. The Weierstrass polynomial for [X], — X in Series A has degree p by Proposition 3.
Suppose © € M,_1. Then v(A4,_2(x)) = 0 if and only if Z ¢ {2,...,p — 1}, if and only if
mo = 1/(p — 2) by Proposition 4. Therefore M,_; C {2,...,p — 1} if mg < 1/(p — 2), and
M, 1n{2,...,p—1} =2 if mg=1/(p—2).

If mo < 1/(p —2) then v(ey(z,q)) > v(cp(z,q)) for n =2,...,p—1 by (x). Since not every
fixed point of [X], has the same residue we must have v(c1(x,q)) = v(cp(z, q)), by [G, Corollary
6.4.11], hence there is at most one x € M,_; with any given residue, and Card(M,_1) =p — 2.

If mg = 1/(p — 2) then v(ca(x,q)) = v(cp(z,q)) = mo by (*), and the Newton polygon for
Series A shows there are at most two zeros with residue Z, using (x) and [G, Corollary 6.4.11].
Suppose [X]; has fixed points z,2’, and z”, such that  # 2" and z = z” # z’. We compute
c1(z’,q) — ci(z,q) = ([2']q — [z]4)logg. Since ' — z has nonzero residue it is a unit, hence
[2']4 — []4 is & unit by Proposition 1, so v(ci (2, ¢) — c1(x,q)) = mg. Since x # z” and T = 7",
we have v(c1(z,q)) > mo by the Newton polygon, and it follows that v(ey (2, ¢)) = myg, so that
x’ is the only fixed point with residue #’. Thus there are at most two points in M,_; with the
same residue, hence Card(M,_1) > p — 3. The last statement is immediate.

Remark. If 0 or 1 is in M, then |[M,_1| = p — 2, since these are also trivial fixed points. By
Proposition 4 and Proposition 5, we compute

d1(M) = U B(a,1) U U B(a, 1) — B(a,p~V/@=1)

where the left union corresponds to v(q—1) = 1/(p —2), the right union to v(¢—1) < 1/(p—2).
Note no rational integer not congruent to 0 or 1 (mod p) may be a fixed point of any [X],.

Theorem 6. Suppose x € Oy, is a nontrwial fized point of [X|q, for some q € B(1,p~V/(=1),
Then Card(¢] ' (x)) = p — 2, and each (z,q — 1) € ¢ (x) determines a distinct residue @, for
q—1=p™u and mog =v(q—1). If (xr,q—1) € M and 2’ € B(x,|Ap_2(z)|) then there exists a
unique ¢' € B(q, |q¢ — 1]) such that (z',q' — 1) € M, and the resulting map

Q(X) : B(z, |Ap—2(z)]) = Blg, g — 1])

defined by Q(z') = ¢’ is an analytic surjection satisfying |¢' — q| = |([z']q — ") /2’ (2’ — 1)|. The
map is a (bijective) contraction (by p'~P=1™0 ) if and only if |A1(71_)2(x)\ =1, if and only if the
multiplicity of T in M, is one. This occurs for all but finitely many residue classes for x.

Proof. Since x is a nontrivial fixed point, ¢; has degree p — 2 by Proposition 4. We show the
cardinality of ¢7'(z) is p — 2 by showing that the various u appearing in ¢ — 1 = p™ou € ¢7 ' (x)
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have distinct residues. Suppose (z,q—1) € ¢;*(z), ¢ — 1 = p™u, and d,, (x, u) is the coefficient
of Series B for g(z,p™U), expanded around u. Then dy(z,u) = 0, and using (xx), the identity
dn(z,u) = >, (":i)dn+i(x,0)ui, and the fact that v(d,—2(x,0)) = 0 (by Proposition 4), we
compute v(d,(x,u)) = 0 for 1 < n < p — 2. Thus the Newton polygon contains the points
(n,v(dp(z,u))) = (0,00),(1,0),...,(p — 2,0), so that no other solution U = «' has the same
residue as u, by [G, Corollary 6.4.11]. We conclude Card(¢;*(z)) = p — 2, and the p — 2 roots

u have distinct residues.

Next, for «/ € B(z,|Ap—2(x)|), we compute |g(z',¢ — 1)| in terms of |2’ — z|. We will show
that |g(2/,q — 1)| = p'~®=2m0|3" — x| except when (mg = 1/(p — 2) and) |A1(71_)2(33)| =1, in

which case |g(z’,q — 1)| < |2’ — x|, and that |A1()132(x)| = 1 for finitely many residue classes z.

Since g(z,q — 1) = 0, by Series B we have

g(l,/7q - 1) _ (gj/ o SC) Z ap = (I/ - LE) Dk(xl))!pkmouk
k=1 k=

—_
—
ol
Jr
\V]

where Dy(X) = (Ap(X) — Ag(z))/(X — x). Compute

k42— s,(k+2)

v(ag) = v(Dg(x")) + kmo —

p—1
:’U(Dk(x/)) 4+ k6 + w
p—

where 6§ =mo —1/(p—1) > 0. If k # p" — 2 then s,(k+2) — 2 > 0, so v(ag) > 0 in this case.
Ifk=p" =2 v(ar) = v(Dpr—2(2")) + (p" —2)6 — 1/(p— 1).

If mo < 1/(p—2) then |A,_2(z)| < 1 by Proposition 5, and |A1()1_)2(:1:)| =1 since A,_2(X) is
separable (mod p). But |A;1T)72(x)| < 1 for r > 1, since x is a multiple root of Apr_o(X)(mod p)

for » > 1. Since
. 1 1 _
Di(a) = AV (z) + EA;”(I)@' @)t EA; )(2) (2 — x)F !

we conclude v(Dpr_2(2")) > v(Dp_2(z’)) = 0 > v(Ap_2(z)) —v(z’ — ) for r > 1 and 2’ €
B(z,|Ap—2(x)]). Since (p" —2)6 — (p —2)d = (p" — p)d > 0 for r > 1, v(apr—2) > v(ay_2) for
my < 1/(p —2), and so v(ap—2) = (p — 2)mg — 1 is the unique minimum value of all of the
coefficients. We conclude |g(z',q — 1)| = p'=®=2mo|a’ — z| = |A, _o(z)|"!|2’ — x|, and since
z' € B(z,|Ap—2(x)|), this shows 1 > |g(z',¢ — 1)| > |2’ — | when mg < 1/(p — 2).

If mg=1/(p — 2), then |A,_2(z)| = 1 by Proposition 5. We compute
AL (X) = (p—2)XP 3 + (p—3)XP* 4+ -+ 2X + 1(mod p)

Thus for all but finitely many residue classes Z, we have A;,l_)Q(m) # 0(mod p), hence Dp_o(z') =
A;l_)Q(x) # 0(mod p) whenever z’ € B(z, 1), hence v(ay_2) = 0. We also compute v(ay) > my
for k # p” — 2 for some r, and since v(apr—2) > (p" —p)/(p —1)(p —2) > 0 for r > 1, this shows
l9(',q = 1)] = |’ — 2| when (mg = 1/(p —2) and) [A4}7,(x)| = 1.



If mg=1/(p—2) and |A1()132(x)| < 1, then |Dp_s(2’)| < 1, so v(ap—2) > (p —2)my — 1 = 0.
Checking by hand, we find A(V,(0) = A'Y,(1) = 1(modp), so & # 0,1, and A, »(1/2) =
O(mod p), so T # 1/2. Since Apr_2(X) = Ap—2(X)"(X(X — 1))""}(modp), the product rule
shows that when r > 1, ASTLQ(:U) # O(modp), since & # 0,1,1/2. Therefore |Dyr_o(z’)] =
1, hence v(apr—2) = (p" —p)/(p —2)(p — 1) > 0 for r > 1. We conclude at any rate that
lg(z',q —1)| < |’ — x| when (mo =1/(p — 2) and) |A1()1_)2(a:)| <1

We have shown that |A1(,1_)2(m)| = 1 implies |g(a’,q — 1)| = p'~®P=2™0|3’ — x|, hence that
g(z',qg — 1) # 0 if 2’ = z, ie., the multiplicity of Z in My is one. Conversely, suppose
r € M,_1 and 7 has multiplicity one in M,_;. We have already seen that |A1(71_)2(x)| =1if
z € {0,1}, and otherwise v(c1(z, q)) = v(cp(z,¢))(= (p — 1)mg — 1) are the minimum values in
Series A for f(X,q— 1), and v(f(z',q¢— 1)) = v(ci(z,q) (2 — ) = v(z' —x) + (p — 1)mo — 1.
Therefore |g(z',q — 1)| = pt=(P=2m0|z/ — z| > |2’ — x|, for all 2’ € B(x,1), and it follows from
the above that |AZ()122($)| =1.

Next we construct the map Q(X) : B(z, |4p—2(z)|) = B(q, |g—1|), by looking at the polygon
for g(a’,p™°U) expanded in Series B around u, for z’ € B(x,|A4,-2(x)|). We've already shown
v(do(2',u)) = v(g(z’,q—1)) > 0, and now claim v(dy (2, v)) = v(dp—2(z’,0)) = 0. Consider the

series

_ Ag(2) _
/ _ / k—1 __ k kmo, k—1
dl(ac,u)—kg:lkdk(xﬂ)u —kE:1k(k+2)!p uw

We've seen v(dy(z’,0)) > v(d,—2(z’,0)) unless k = p” — 2 for some r, and we compute as before,
v(dpr—2(2’,0)) = v(Apr—_2(z)) + (p" —2)0 —1/(p—1), where 6 = mg—1/(p—1). Since Ap_2(X)
divides Apr_2(X), we have v(Apr_2(z)) > v(Ap—2(x)), and now it is easy to see v(dpr_2(z’,0))
is strictly minimized at » = 1, hence v(di(2’,u)) = v(dp—2(2',0)). Since v(Dp_2(z')) > 0, we
have v(A,_o(z') — Ap_a(x)) > v(z’ —z) > v(Ap_2(x)), hence v(Ap_2(z’)) = v(Ap—2(x)) =
1 —(p—2)myg, and we compute v(dp—2(z’,0)) = 0. Therefore v(dy(z’,u)) = 0.

Since v(dp(z’,u)) > v(di(2’,u)) = 0, the Newton polygon for g(z’,p™°U) expanded around
u shows that for each 2’ € B(z, |Ap—2(x)|) there is a root U = «’ € B(u, 1), so that @’ = @, and
v(u —u) =v(do(2',u)) = v(g(z',q — 1)). Setting ¢’ =1+ p™ou/, we compute

I —ql=p ™ |g(@',q = 1) = |([z']; — 2") /2" (2" = 1)]

1f |AV, (2)| = 1, then |’ — ¢| = p"~®=D™0|2’ — 2|, so Q(X) is a contraction. If |4}, (z)| < 1,
then |¢’ —q| < p*~®=Ymo|g’ — x|, and Q(X) is not a contraction. For then the explicit formula
for Dp,_2(X) shows that |Dp_2(2’)| = 1 in the limit as |z’ — x| approaches 1 = |A,_s(x)|, hence
|¢' — q| approaches p'~(P=1mo|z/ — x| arbitrarily closely for 2’ € B(z, 1).

This «’ is unique since the p — 2 solutions for U in g(z’,p™°U) have distinct residues, by the

preceding argument. Thus we have a well defined map
Q(X) : Bz, [Ap—2(z)]) = Blg, lg — 1))

sending 2’ to ¢’ = Q(z') = 1+ p™o«’. This map is analytic by Proposition 2.
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Next we show Q(X) is surjective. Suppose (x,q — 1) € M, and ¢’ € B(q,|¢ — 1|). Since
ld —ql <lg—1|,|¢ —1] = |g—1| = p~—™°. Define v and v’ by ¢ = 1+ p™°u and ¢’ = 1+ p™ou’,
and let € = v’ — u, so that v(e) > 0. Since g(x,q — 1) = 0, in Series B we have

g(z,¢d —1)=g(z,qd — 1) —g(z,q—1) :Z Y(u+e)™ —u™)

n=1

By the binomial theorem, € is a factor of each (u + €)™ — u™, and so v(g(z,¢' — 1)) > v(e) > 0.

We show there exists an 2’ € B(x,|Ap—2(x)|) N My —1. First assume Z # 0,1, so that
v(f(xz,q —1)) =v(g(x,q —1)) +mgp. Let c,(x,q") be the coefficient of Series A for f(X,q —1)
expanded around x. Since v(g(x,q¢’ — 1)) > 0, we have v(co(z,q")) = v(g(z,q — 1)) + mg >
mo > (p— 1)mo — 1 = v(cp(z,¢’)), hence v(co(x,q’)) > v(cp(x,q’)). Therefore f(X,q — 1) has
a solution X = 2’ such that |2’ —z| < 1, and 2’ € B(z,1) " My _1. If mg = 1/(p — 2), then
|Ap—2(z)| = 1, and we are done. If mg < 1/(p — 2), then the residue multiplicity of #’ in M, _q
is one by Proposition 5, so that v(ci(z,¢’)) = v(cp(z,q’)) = (p — 1)mo — 1, and by the above
computation we have v(co(z,q")) > mg. Since v(A,—2(x)) = 1 — (p —2)mg by Proposition 4, we
conclude v(z’ — ) = v(co(x,q")) — v(er(z,q")) > v(Ap—2(x)), as desired.

Next, suppose T = 0, then my = 1/(p — 2) by Proposition 5, and |A,_2(z)| = 1. Since
0 € B(z,1), and Q(X) : B(z,1) — B(q, |¢ — 1|), we may assume x = 0 € M,_;. Series A for
f(X,q — 1) expanded around 0 has the trivial fixed point 0, so ¢y(0,¢') = 0/ we will show
v(c1(0,¢")) > v(c2(0,¢')). Since my = 1/(p — 2), we compute v(c2(0,¢")) = mo = v(c,(0,4") by
(*), so we have to show v(c1(0,q")) > mg. The series for ¢1(0,¢') =logq' /(¢ — 1) — 1 is

1)n+1 (—1)n+1

—1+Z @ -1 =3 @ -y

n=0
—(¢ =1)/24(¢ —1)*/3—-+ (¢ -1 /p—

We see at once that only the n = 0 and n = p — 2 terms in the right parentheses have value
mo = v(q¢’ — 1). Since ¢1(0,q) = 0, it suffices to show v(q’ — q) > mg and v((¢' — 1)P~ — (¢ —
1P~ > v(p) +mg. Writing ¢’ —1 = ¢—1+p™e with v(e) > 0, as before, we immediately verify
v(q’ — q) > my, and applying the binomial theorem, we see v((q — 1+ p™°e)P~! — (¢ —1)P~1) >
1+ mg. We conclude v(c1(0,q")) > v(c2(0,¢')), and the Newton polygon shows there exists an
' € B(0,1) N My _1, as desired.

Next, suppose Z = 1, then again mo = 1/(p — 2) by Proposition 5, and |A,_2(x)| = 1. Again
we may assume « = 1, since 1 € B(z, 1), and the proof that B(z,1) N My _1 is nonempty is
exactly like the Z = 0 case. We reduce immediately to showing v(c1(1,¢")) > v(e2(1,4")) = mo.
The series for ¢1(1,¢') = ¢'logq' /(¢ —1) — 1 is

o Sy

-1 —)"t=—1+4¢ f_1)n
+§ ¢ =" +q+n§:1n+1q(q )
q q 9 q 1
= —(=——1 q/—l +fq/_1 _...+iql_1p_ ..
(-0 -D+% -1 =)
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Again v(c1(1,¢") > my is equivalent to v(e1(1,¢") — ¢1(1,¢q)) > mp, which is equivalent to
v(=(d'/2 = D¢ = 1)+ (¢/2 = V(g — 1) +¢'/p(a’ — P~ — q/p(g — 1)P71) > mo, and the
verification is routine. It follows that =’ € B(1,1) N My _ exists, as desired.

We have shown that for each (x,q —1) € M and ¢’ € B(q,|¢ — 1]), there exists an z’ €
B(z, |Ap—2(z)|) N My _1. Thus the map Q(X) : B(z,|A4,—2(x)]) — B(q, |g — 1|) is onto. This
completes the proof.

Remark. If the multiplicity of the residue T in Hq,l is not equal to one, then by Proposition 5
and Theorem 6, its multiplicity is two, Card(M,_1) = p — 3, |4,—2(z)| = 1, and |A§,1_)2(x)| < 1.
It follows that |A,_2(z')] = 1 and |AI()1_)2(95')| < 1 for each 2/ € B(z,1), and each residue 7’
has multiplicity two in M g(,)—1. We leave aside the problem of proving the existence of such
points, and more especially of proving the existence of nontrivial fixed points x of multiplicity
two (in My_1). Of course, if p = 3, there is no issue.

We next restrict Theorem 6 to the ordinary p-adic integers, which served as the initial moti-
vation for this investigation.

Corollary 7. Let M(Z,) = {(z,q—1) € M : x,q € Z,}. Then
M(Z,) #@ < p=3

The elements x € Z3 that are nontrivial fized points for some [X|, form the union ¢1(M(Zs)) =
B(1,1) UB(0,1), and we have an analytic bijection

Q(X):B(1,1) — B(4,37h
B(0,1) — B(7,371)

with |¢' — q| = |2’ — x|/3.

Proof. By Proposition 3, M # @ if and only if 1/(p — 1) < v(g—1) < 1/(p — 2), so we have
the first statement. Assume p = 3. By Proposition 4, ¢1(M) NZ3 = {z € Z3 :  # 2(mod 3)},
and by Proposition 3, ¢o(M) NZ3 = {g—1:|¢— 1| = 371}. Since the Weierstrass polynomial
for Series B has degree one, we see that © € Z3 if and only if Q(z) = ¢ € Z3, so these sets are
$1(M(Z3)) and ¢o(M(Z3)), respectively. Locally the map Q(X) takes B(z,1) onto B(g,371),
and is a contraction by 1/3, by Theorem 6. By sheer luck we find the nontrivial fixed point
x = —1/2 for ¢ = 4, and since —1/2 has residue 1, we conclude that Q(X) takes B(1,1) onto
B(4,37 1) and B(0,1) onto B(7,371).

|
Remark. Using the 3-adic Weierstrass Preparation Theorem together with Series A one can
approximate the nontrivial fixed point of [X], for any ¢ € B(4,37') (or ¢ € B(7,371)) to
arbitrary accuracy, and conversely using Series B one can approximate the value ¢ for which
any z € B(1,1) (or z € B(0,1)) is a fixed point for [X],. For example, we find that x =0 is a
nontrivial fixed point for [X],, where

q~1+2-34+324+2-334+3042.37
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