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FINITELY GENERATED MODULES OVER A PID 3

We prove the fundamental theorem for finitely generated modules over a PID, and apply it
to abelian groups and linear transformations. We give the algorithms for putting a given finitely
generated abelian group into its canonical form as a direct sum of cyclic groups, for computing the
rational canonical and Jordan forms of a linear transformation, and for finding the basis change
matrices in each of these cases.

1. Submodules of Free Modules Over a PID

Aside from invariance of cardinality, an important property of vector spaces is that they are all
free; therefore the subobjects are automatically vector spaces. This is not true for modules over a
general commutative ring, or even over an arbitrary integral domain. But it holds over a PID.

Theorem 1.0.1. Let R be a PID. If M is a free R-module of rank n and K ⊂ M is a submodule,
then K is free of rank m ≤ n.

Proof. If K = 0, K is free of rank 0, done. Assume n ≥ 1 and K ≠ 0. We induct on the rank n.

Base Case. If n = 1 then K ≃ I for some nonzero ideal I ⊂ R. Since R is a domain, and R is a PID,
K is free of rank 1 ✓.

Inductive Step. Assume n > 1 and the result holds for modules of rank < n. Set M = R
n, and let

M
′
= R

n−1
⊂ M be the first n − 1 summands, which is the kernel of the map π ∶ M ⟶ R defined

by π(a1 +⋯+ an−1 + an) = an. Then we have a short exact sequence

0 ⟶ M
′
⟶ M

π
⟶ M

′′
⟶ 0

We “intersect” this sequence with K. Let K
′′
= π(K) ⊂ R, free of rank 0 or 1 by the base case, and

let K
′
= K ∩M

′, free of rank at most n − 1 by the induction hypothesis. Then we have

0 ⟶ K
′
⟶ K

π
⟶ K

′′
⟶ 0

Since K
′′ is free, K ≃ K

′ ⊕K
′′ by Hw7#4. If K ′′

= (0) this shows K is free of rank at most n − 1,
as desired. If K

′′
≠ (0), {k1, . . . , km−1} is a basis for K

′, and {π(km)} is a basis for K
′′, then let

B = {k1, . . . , km}. B is linearly independent: If 0 = ∑m

i=1 riki then π(0) = 0 = rmπ(km) for some rm,
hence rm = 0 since {π(km)} is linearly independent. Then 0 = ∑m−1

i=1 riki, hence ri = 0 for all i since
the first m − 1 ki’s are linearly independent. Therefore B is linearly independent. B spans K: If
k ∈ K and π(k) = rmπ(km), then π(k−rmkm) = 0, hence k−rmkm ∈ K

′, so k−rmkm = ∑m−1
i=1 riki.

Therefore k = ∑m

i=1 riki, which shows B spans K. We conclude B is a basis (of cardinality m ≤ n),
hence K is free of rank m ≤ n. This completes the inductive step.

We conclude the result is true for all n by induction. □

Remark 1.0.2. The result is false if R is not a PID: If R = R[X,Y ], M = R, and K = (X,Y ), then
K is not free. For example, X and Y span K, but are not linearly independent, since Y ⋅X−X⋅Y = 0.
In fact, any two elements p(X,Y ), q(X,Y ) ∈ K are dependent, since qp − pq = 0. On the other
hand, no single element spans K, since X and Y are already not R-multiples of a single element of
K: R is a UFD, and X and Y are distinct primes, hence have no common divisor.

Or if R = Z/4, M = R, the submodule R ⋅2 = {0, 2} is not free. For 2 is not linearly independent
since 2 ⋅ 2 = 0, and there are no other choices for a spanning set!
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2. Smith Normal Form for Matrices Over a PID

Let R be a commutative ring with 1. Any R-module endomorphism R
n
⟶ R

n may be repre-
sented by a matrix A ∈ Mn(R), so that

Mn(R) ≃ EndR(Rn)

As usual, we put GLn(R) = AutR(Rn) = Mn(R)×.

Definition 2.0.1. We say two m×n matrices A and A
′ are equivalent if ∃P ∈ GLm(R), Q ∈ GLn(R)

such that A
′
= PAQ. This is clearly an equivalence relation. We write A ∼ A

′.

Picture:

R
n

R
m

R
n

R
m

A

P

A
′

Q

If m = n then equivalent matrices are associates in the ring Mn(R), so we can think of this
property in Mm×n(R) as a generalization of the associate property in ring theory.

2.1. Elementary Row and Column Operations. Let eij denote the ij-th matrix unit in
Mm(R), with a single 1 in the ij-th position. Elementary row operations on an m × n matrix
are left multiplications by the following elements of GLm(R)

(1) Tij(b) = I + beij for i ≠ j (Ri ↦ Ri + bRj)
(2) Di(u) = I + (u − 1)eii for u ∈ R

× (Ri ↦ uRi)
(3) Pij = I − eii − ejj + eij + eji (Ri ↔ Rj)

Elementary column operations on an m×n matrix are right multiplications by the transposes of the
corresponding matrices in GLn(R): We get Ci ↦ Ci + bCj , Ci ↦ uCi, and Ci ↔ Cj , respectively.

Since elementary row and column operations have determinant ±1 or a unit u ∈ R
×, and the

determinant is multiplicative, equivalent matrices have determinants that differ by units in R.

Definition 2.1.1. Let R be a PID, A ∈ Mm×n(R). A Smith normal form of A is a diagonal matrix
D = diag{s1, . . . , sk, 0, . . . , 0} such that A ∼ D and si ∣ sj if i < j.

We first show every matrix has a Smith normal form, and then that the normal form is uniquely
determined up to units.

Theorem 2.1.2 (Smith Normal Form). Suppose R is a PID and A ∈ Mm×n(R). Then

A ∼ D ∶= diag{s1, . . . , sk, 0, . . . , 0} = diag{1, . . . , 1
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

k−r

, d1, . . . , drÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
nonunits

, 0, . . . , 0}

for some k, r ∈ N ∪ {0} and si ∈ R − {0} such that si∣sj if i < j. If R is a Euclidean domain then
the matrices P ∈ GLm(R) and Q ∈ GLn(R) such that D = PAQ are products of elementary row
and column operations, respectively.
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Proof. Assume first that R is a Euclidean domain, which is an integral domain together with a
degree function

δ ∶ R − {0} ⟶ N ∪ {0}
that satisfies

(1) δ(ab) ≤ δ(a) + δ(b) for all a, b ∈ R − {0}.
(2) For all a, b ∈ R with b ≠ 0 there exist q, r ∈ R satisfying a = bq + r, where either r = 0 or

δ(r) < δ(b).

Algorithm. We may assume A ≠ 0, else done. If a11 = 0 then it is easy to show that using
elementary row and column operations we may replace it by a nonzero element. Therefore assume
a11 ≠ 0.
Claim: If a11 does not divide every entry of A, then row/column ops can replace it with an element
of smaller degree.
Prove claim: Assume a11 doesn’t divide some aij . Either i = 1, j = 1, or i and j are not 1, and
we take these cases in order. If a11 does not divide some a1j we have a1j = a11bj + b11, with
δ(b11) < δ(a11), by the Euclidean property, and by committing the column operation Tj1(−bj)t ∶

Cj ↦ Cj − bjC1 we replace a1j with b11, and then P
t
1j replaces a11 with b11 ✓. Similarly if a11 does

not divide some ai1, we may replace it with an element of smaller degree using a row operation ✓.
If a11 divides a1j and ai1 but not aij , then we may replace ai1 with zero, which replaces aij with
aij plus a multiple of a1j , call it a

′
ij . Then using Ti1 we replace a1j with itself plus a

′
ij , producing

an element in row 1 not divisible by a11, and then we lower the degree of a11 as before ✓. This
proves the claim.

Since the degree function takes values in N ∪ {0}, and δ(b11) is minimal among all values in
R − {0} if and only if it is a unit in R, the claim implies we may assume b11 divides every element
of A. Then we may use row/column ops to zero out every other entry in R1 and C1, so that A is
equivalent to

(∗)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 0 ⋯ 0

0 b22 ⋯ b2n

⋮ ⋮ ⋯ ⋮

0 bm2 ⋯ bmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with b11 ≠ 0 and b11 ∣ bkl. If b11 is a unit, we can make b11 = 1, using an elementary row op.

Continue with the (m− 1)× (n− 1) matrix in the southeast corner, noting that always b11 will
divide everything. By induction, A is equivalent via row/column operations to a diagonal matrix
of form diag{s1, . . . , sk, 0, . . . , 0}, with nonzero entries si such that si∣sj for i < j, ✓ . Since row
operations are represented by elements of GLm(R) and column operations by elements of GLn(R),
we have Q ∈ GLn(R) and P ∈ GLm(R) such that D = PAQ.

If R is not a Euclidean domain we cannot in general diagonalize A with row and column oper-
ations alone, and we modify the argument as follows. Instead of δ we use the length λ, defined to
be the number of primes – with multiplicity – appearing in a (nonzero) prime factorization. Then
λ(u) = 0 if and only if u ∈ R

×, and then u divides everything. We make the analogous claim,
that if a11 does not divide some aij , then we may replace it with an element of smaller length.
If a11 ∤ a1j , commit C2 ↔ Cj so that a11 ∤ a12. Let d = gcd(a11, a12), then λ(d) < λ(a11). By
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Bezout’s Theorem there exist elements x, y such that a11x + a12y = d. Note we have used the fact

that R is a PID. Put s = a12d
−1, t = −a11d

−1, and behold: [−t s

y −x
] ⋅ [x s

y t
] = I2. In particular

we have an invertible matrix

[x s

y t
]⊕ In−2

Right multiplication on A gives a matrix whose first row is diag{d, 0, b13, . . . , b1n}, and λ(d) <

λ(a11). Similarly we can lower the length if a11 ∤ ai1, and the rest of the proof follows the
Euclidean case.

Finally, since si ∣ sj , any units si that occur are at the beginning, and left multiplication by
Di(s−1i ) converts them to 1’s, so that diag{s1, . . . , sq, 0, . . . , 0} ∼ diag{1, . . . , 1, d1, . . . , dr, 0, . . . , 0}
for nonuits di ∶= sk−r+i, for some r. □

Example 2.1.3. Let R = Q[x], a PID. We apply the algorithm to the matrix [x − 2 −1

1 x − 3
]:

[x − 2 −1

1 x − 3
] ⟶ [ −1 x − 2

x − 3 1
] ⟶ [ 1 x − 2

3 − x 1
] ⟶ [1 x − 2

0 (x − 2)(x − 3) + 1
]

⟶ [1 0

0 x
2 − 5x + 7

]

The operations are C1 ↔ C2, C1 → −C1, R2 → R2 + (x − 3)R1, and C2 → C2 + (2 − x)C1. Thus

[ 1 0

x − 3 1
][x − 2 −1

1 x − 3
][ 0 1

−1 x − 2
] = [1 0

0 x
2 − 5x + 7

]

2.1.4. Equivalent Matrices Have the Same Smith Normal Form. We will show that each
equivalence class of equivalent matrices has a uniquely determined representative in Smith normal
form, up to units of course.

Definition 2.1.5. Suppose A has degree (m,n), and I and J are subsets of {1, . . . ,m} and
{1, . . . , n}, respectively, such that m − ∣I∣ = n − ∣J∣.

◦ The submatrix AIJ is the square matrix obtained from A by deleting rows I and columns J .
◦ The minor MIJ of A is det(AIJ).
◦ The degree of a minor MIJ is deg(AIJ).
◦ The rank rk(A) of A ∈ Mm×n(R) is the largest degree of a nonzero minor of A.

Theorem 2.1.6. Suppose R is a PID, A ∈ Mm×n(R), and rk(A) = k. For each 1 ≤ i ≤ k, let
∆i = ∆i(A) be a gcd of the degree-i minors of A. Suppose

A ∼ diag{s1, . . . , sk, 0, . . . , 0}

with si∣sj for i < j as in Theorem 2.1.2. Then ∆i divides ∆i+1 for each i, and

s1 ∼ ∆1, s2 ∼ ∆2∆
−1
1 , ⋯, sk ∼ ∆k∆

−1
k−1

In particular, the si are uniquely determined up to units for the equivalence class of A.
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Proof. Claim: A ∼ B implies ∆i(A) ∼ ∆i(B) (i ≤ k) (associates in R). If P ∈ GLm(R) then
the hi-entry of PA is ∑j phjaji ⟹ Rh(PA) = ph1R1(A) + ph2R2(A) +⋯ + phmRm(A), i.e., the
rows of PA are R-linear combinations of the rows of A. The determinant function is alternating
and R-multilinear on rows (or columns) ⟹ degree-i minors of PA are R-linear combinations of
the degree-i minors of A. (Try degree-2 minors for n = 3.) In a PID, a linear combination of
a set of elements is divisible by the gcd of the elements. Therefore ∆i(A) divides each degree-i
minor of PA, hence ∆i(A)∣∆i(PA). Similarly if Q ∈ GLn(R) then ∆i(A)∣∆i(AQ). If A ∼ B then
∃P ∈ GLm(R), Q ∈ GLn(R) such that B = PAQ, P

−1
BQ

−1
= A, hence ∆i(A)∣∆i(B)∣∆i(A).

Therefore ∆i(A) ∼ ∆i(B) ✓ . Now in particular A ∼ diag{s1, . . . , sk, 0, . . . , 0} by Theorem 2.1.2,
and we compute ∆i ∼ s1⋯si for i ∶ 1 ≤ i ≤ k, by inspection. Successive solving for the si yields
s1 ∼ ∆1, s2 ∼ ∆2∆

−1
1 , . . . , sk ∼ ∆k∆

−1
k−1 ✓. The final statement is immediate. □

Remark 2.1.7. This theorem gives an important “determinant shortcut” for computing the si,
which as we will see are crucial for classifying finitely generated modules over a PID. Note also that
if a matrix is similar to a diagonal matrix, the si give the diagonalized entries.

Notation. Let R be a PID. Since the Smith normal form of Definition 2.1.1 is uniquely determined
(up to units), for any A ∈ Mm×n(R) we put

SNF(A) ∶= diag{s1, . . . , sk, 0, . . . , 0}

with nonzero si satisfying si∣sj for i < j.

3. Structure of Finitely Generated Modules Over a PID

Let R be a PID, M a finitely generated R-module, on n generators. By the universal property
of free modules, we have a surjective map π ∶ Rn

⟶ M . By Theorem 1.0.1, the kernel K is free of
rank m ≤ n. Since K is finitely generated, we have a surjective R-linear map L ∶ Rn

⟶ K ≤ R
n.

Putting these together yields an exact sequence

R
n L
⟶ R

n π
⟶ M ⟶ 0

where L(Rn) = K. We will use this setup to prove a structure theorem about M , by “diagonalizing
L” so that M is realized as a coproduct of cyclic R-modules. This amounts to committing basis-
change on each of the R

n’s. Here’s the general notation.

3.1. Basis Change Notation. To change bases we need good notation, the better to avoid the
madness that comes with confusing "basis change" with "invertible linear transformation". For an
invertible matrix can be used in two ways: To write a vector given in one basis in terms of another
basis, and to relate two bases.

◦ Let e, e′ be bases for a free R-module R
n of rank n.

◦ If v ∈ R
n, write [v]e for the expression v = ∑n

i=1 viei = (vi) ∈ R
n.

◦ We say [id]ee′ ∶ [v]e′ ⟼ [v]e writes [v]e′ in terms of e.
◦ Let P = [id]ee′ . Then P is in GLn(R).
◦ The j-th column of P is [e′j]e, i.e., [e′j]e = ∑n

i=1 aijei (for P = (aij)).
◦ We have e

′
= eP , and P

t
e
t
= (e′)t, meaning e

′
j = a1je1 +⋯+ anjen.

◦ We call P−1
= [id]e

′

e ∶ [v]e ⟼ [v]e′ the basis change matrix (from e to e
′).
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◦ If L ∈ EndR(Rn) we write [L]ee′ ∶ [v]e′ → [L(v)]e, and P
−1[L]eeP = [L]e

′

e′ .

3.2. Embedding Along the Diagonal. Suppose R
n
= ∐n

i=1 Rei is the free R-module of rank n,
on basis e = {e1, . . . , en}. Let (di)ei ⊂ Rei be the submodule defined by principal ideals (di) ⊂ R.
For the quotient we write

Rei
(di)ei

=
R

(di)
ei

The R-module homomorphism

π ∶
n

∐
i=1

Rei ⟶
n

∐
i=1

R

(di)
ei

ei ⟼ (1 + (di))ei

is surjective, with kernel K = {∑i miei ∶ di ∣ mi ∀i} = ∐i(di)ei. By First Isomorphism Theorem,

∐i Rei

∐i(di)ei
≃ ∐

i

R

(di)
ei

The direct sum expression of K is compatible with R
n in that its summands line up with those of

R
n. We will say it is “direct-sum compatible”. Direct sum compatibility of a submodule makes the

quotient easy to compute as a direct sum, so “the quotient of the coproducts is the coproduct of the
quotients”. Thus if A ∶ ∐i Rei ⟶ ∐i Rei is the homomorphism taking ei to diei, where di ∈ R,
then A(∐i Rei) = ∐i(di)ei ≤ ∐i Rei, and the quotient is ∐i R/(di)ei. We say that A embeds R

n

into R
n along the diagonal, because it is direct-sum compatible.

In general an R-module homomorphism A ∶ ∐i Rei ⟶ ∐i Rei is not along the diagonal, but
expresses the image of each ei as an R-linear combination of the ei, and the quotient is then not
such a simple coproduct. This is our starting point:

3.3. Presentation Matrix. Suppose given a surjective map

R
n π
⟶ M ⟶ 0

Let e = {e1, . . . , en} be the standard basis for Rn, and let K = ker(π) ⊂ R
n the kernel, free on some

basis y = {y1, . . . , ym}, m ≤ n. Let f = {f1, . . . , fn} be a standard basis for another copy of Rn, and
define

L ∶ R
n
⟶ R

n

fi ⟼

⎧⎪⎪⎪⎨⎪⎪⎪⎩

yi if i ≤ m

0 if i > m

Suppose the expression of each yj in terms of e is

yj =

n

∑
i=1

aijei

Set aij = 0 for j > m and let A = (aij), so that A = [L]ef ∶ [Rn]f ⟶ [Rn]e.

Definition 3.3.1. The transpose A
t, with i-th row [yi]e, is the presentation matrix for M with

respect to e and f .
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Remark 3.3.2. The presentation matrix for M depends on the basis. If e′ and y
′
, f

′ are new bases

for R
n and K,R

n, set P = [id]ee′ and Q = [id]ff ′ , then A
′
= P

−1
AQ = [L]e

′

f ′ ∶ [R
n]f ′ → [Rn]e′ . The

new presentation matrix is A
′ t
= Q

t
A

t
P

−t.

When the embedding A = [L]ef is along the diagonal, each fi is assigned a multiple diei of ei, for
the same i, as opposed to a more general R-linear combination of the ei, and by (3.2) the quotient is
easy to compute. The fundamental structure theorem below shows us that we can always maneuver
into this situation.

Theorem 3.3.3 (Fundamental Structure Theorem). Suppose R is a PID and M is a finitely
generated R-module. Then M is a direct sum of cyclic modules:

M ≃

r

∐
i=1

R/(di)⊕R
f

for a (possibly empty) set of uniquely determined nonzero nonunits di, called invariant factors, such
that di∣dj if i < j, and a non-negative integer f , called the rank.

Proof. The di and f will be shown to be uniquely determined by M in Theorem 3.6.1. Let x =

x1, . . . , xn be a set of generators for M . Let e = {ei} be a basis for R
n, and define

π ∶ R
n
⟶ M

n

∑
i=1

riei ⟼
n

∑
i=1

rixi

Let K = ker(π) ⊂ R
n, a free module of rank m ≤ n by Theorem 1.0.1. Let y = {y1, . . . , ym} be a

basis, let f = {f1, . . . , fn} be the standard basis for another copy of Rn, and define L by

R
n L // R

n π // M // 0

where L(fi) = yi for i = 1, . . . ,m, and L(fi) = 0 for i > m. This sequence is exact. Let A = [L]ef ∶

[Rn]f ⟶ [Rn]e. so A
t is a presentation matrix for M with respect to e and f .

By Theorem 2.1.2 there exist P,Q ∈ GLn(R) such that

P
−1
AQ = SNF(A) = diag{1, . . . , 1, d1, . . . , dr, 0, . . . , 0}

for nonzero nonunits di such that di∣dj if i < j. Assume f zeros. The 1’s represent redundancy
in the xi. Since P,Q ∈ GLn(R), we have bases e

′, f
′ such that P = [id]ee′ and Q = [id]ff ′ then

[L]e
′

f ′ = P
−1
AQ ∶ [Rn]f ′ ⟶ [Rn]e′ . This matrix takes f

′
i to the corresponding multiple of e′i. Now

M ≃ R
n/K ≃

r

∐
i=1

R/(di) ⊕R
f

□

Example 3.3.4. Let R be a PID, and let M = R
2/Rm, where m = ae1 + be2 ∈ R

2
= Re1 ⊕Re2.

The module Rm is free on basis element m, since R is an integral domain, and we have an exact
sequence

Rf1 ⊕Rf2
L // Re1 ⊕Re2

π // M // 0
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where

A ∶= [L]ef = A = [a 0

b 0
]

Let d = gcd(a, b) = ar + bs, then by Theorem 2.1.6 we have SNF(A) = diag{d, 0}, hence

M ≃
R

(d) ⊕R

We can find the diagonalizing matrix by using elementary row and column operations to put A in

Smith normal form. I get P = [a/d −s

b/d r
]. Check that

SNF(A) = P
−1
A = [ r s

−b/d a/d][
a 0

b 0
] = [d 0

0 0
]

As in the proof, P−1
= [id]e

′

e , and e
′
= eP is the new basis with respect to which M is diagonal.

Explicitly, e′1 = (a/d)e1 + (b/d)e2 and e
′
2 = −se1 + re2, P

−1
A = [L]e

′

f , and now

M = Re
′
1/(d)e′1 ⊕Re

′
2

The summands are generated by π(e′1) = e
′
1 + (d)e′1 and π(e′2) = e

′
2, respectively.

3.4. Generators for the Diagonalized M. Given a presentation for a finitely generated module
M , we construct in Theorem 3.3.3 a decomposition of M as a coproduct of cyclic modules, by
diagonalizing the presentation matrix for M . We can produce the generators of the cyclic direct
summands as follows.

Corollary 3.4.1. Suppose A
t
∈ Mn(R) is a relations matrix defining M as a quotient of Rn with

respect to x = {x1, . . . , xn} ⊂ M , and SNF(A) = P
−1
AQ. Then x

′
= xP is the generating set of the

cyclic direct summands of M in Structure Theorem 3.3.3.

Proof. The map π ∶ Rn
⟶ M sends e to x, hence it sends e

′
= eP to x

′
= xP , since π is R-

linear. The result follows since the e
′
i generate the summands of R

n that form the diagonalized
quotient. □

3.5. Decomposition into p-Primary Components. We prove a second version of Structure
Theorem 3.3.3 that replaces the invariant factors with “elementary divisors”. Recall that if R is a
PID then it is a UFD, and it has prime elements.

Definition 3.5.1. Let R be a PID, and M an R-module.

◦ The torsion submodule of M is the set

Mtor = {m ∈ M ∶ am = 0 some 0 ≠ a ∈ R}

◦ For each prime p ∈ R, the p-primary submodule of M is the set

Mp = {m ∈ M ∶ p
e
m = 0, ∃e ∈ N}

On the homework we show Mtor is a submodule using only that R is an integral domain. If M is
finitely generated with invariant factors di, then by inspection Mtor ≃ ∐r

i=1 R/(di). The submodule
Mtor is defined intrinsically, and so it is a “characteristic submodule”, meaning that it is invariant
under any automorphism of M .
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Mp is a submodule as long as we have primes with which to define it. On the homework
we prove that a submodule of a finitely generated module over a PID is finitely generated, us-
ing Theorem 1.0.1. Therefore if M is finitely generated then so is Mp, and by Theorem 3.3.3,
Mp ≃ ∐t

i=1 R/(pei) for numbers ei > 0 such that ei ≤ ei′ if i < i
′.

Theorem 3.5.2 (Fundamental Structure Theorem′). Suppose R is a PID and M is a finitely
generated R-module. Let {d1, . . . , dr} be the invariant factors of M , let dr = ∏tr

j=1 p
erj
j be a prime

factorization of dr, and let sj = inf {i ∶ pj ∣ di}. Then

M ≃

tr

∏
j=1

(
r

∐
i=sj

R/(peijj )

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Mpj

)⊕R
f

for a uniquely determined f ≥ 0, called the rank, and a (possibly empty) uniquely determined set of
prime-powers p

eij
j , called elementary divisors, satisfying 0 < eij, eij ≤ ei′j if i < i

′.

Proof. We have M ≃ ∐r

i=1 R/(di)⊕ R
f with d1 ∣ ⋯ ∣ dr, all nonzero nonunits. Since R is a PID,

it is a UFD, so each di factors into prime powers in R. Since di ∣ di′ for i < i
′, we may order the

primes pj so that those appearing in di are {p1, . . . , pti}, with ti ≤ ti′ for i < i
′, and di ∼ ∏ti

j=1 p
eij
j

for unique eij > 0 satisfying eij ≤ ei′j for i < i
′. By the Chinese Remainder Theorem,

R/(di) ≃
ti

∏
j=1

R/(peijj )

Now M ≃ ∐r

i=1 ∏ti
j=1 R/(peijj ). Consolidating the pj ’s leads to the stated expression, with the

product of the pj-primary components forming Mpj . We prove uniqueness in Theorem 3.6.1 below.
□

3.6. Uniqueness of the Invariant Factors. A different set of generators of M produces a dif-
ferent relations matrix, and it is unclear a priori that different relations matrices even have the
same size, let alone are equivalent, hence that the di’s in Structure Theorem 3.3.3 are uniquely
determined. The proof that they are is hard, and seems to require the use of primes.

Theorem 3.6.1 (Uniqueness). Let R be a PID, and let M be a finitely generated R-module. Then
the invariant factors di of Structure Theorem 3.3.3 and the elementary divisors p

eij
j of Structure

Theorem 3.5.2 are uniquely determined up to units, and the rank f in each case is uniquely deter-
mined.

Proof. Let M ≃ ∐r

i=1 R/(di)⊕R
f be the decomposition of Theorem 3.3.3. Since Mtor ≃ ∐r

i=1 R/(di),
the quotient M/Mtor is isomorphic to R

f , hence f is uniquely determined by the invariance of rank.
This reduces the theorem to proving uniqueness for M = Mtor.

Assume M = Mtor. Let {pj ∶ 1 ≤ j ≤ tr} be the set of prime divisors of dr. By the Structure
Theorem 3.3.3, Mpj ≃ ∐r

i=sj
R/(peijj ) for eij ∈ N satisfying eij ≤ ei′j for i < i

′. We will show these
invariants are uniquely determined. To simplify notation, put p = pj , ei = eij , and s = sj . We
have a filtration Mp ⊃ pMp ⊃ ⋯ ⊃ p

etMp = (0), whose factors M
(k)
p ∶= p

k
Mp/pk+1Mp are R/(p)-

modules for k = 0, . . . , et−1. Since R is a PID and p is prime, (p) is a maximal ideal, so F = R/(p)
is a field, hence M

(k)
p is an F -vector space, whose dimension dim FM

(k)
p equals the number of ei

greater than k in the decomposition Mp = ∐s

i=1 R/(pei). This comes from the third isomorphism
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theorem: p
k
Mp/pk+1Mp has as many summands as there are nonzero p

k
R/(pei), ✓. In particular,

dim F (Mp/pMp) = t, the number of ei equal to at least 1, dim F (pMp/p2Mp) is the number of ei
equal to at least 2, and so on. Thus t, ei, and their multiplicities are uniquely determined by this
canonical filtration, as desired.

To finish the proof we observe that in the notation of Theorem 3.5.2, Mpj ≃ ∐r

i=sj
R/(peijj ), so

the exponents eij of the elementary divisors are uniquely determined, so the elementary divisors
p
eij
j are uniquely determined up to units, and since the di’s are uniquely products of the p

eij
j ’s up

to units, the di’s are uniquely determined up to units. □

4. Application to Abelian Groups.

Suppose given an abelian group G with a set of relations K = 0, which express G as a quotient
of Zn by the image K of a linear map A ∶ Zn

⟶ Zn. As noted above, the map A may or may not
be along the diagonal.

4.1. Explicit Examples.

Example 4.1.1. See Example 3.3.4. What is G = (Ze1 ⊕ Ze2)/Z(4e1 + 6e2) as a coproduct of
cyclic groups? The quotient is defined by the exact sequence

Zf1 ⊕ Zf2
[4 0
6 0

]
// Ze1 ⊕ Ze2

π // G // 0

The matrix has a single nonzero invariant factor gcd(4, 6) = 2, so we know G ≃ Z2 ⊕ Z. Explicitly,
the row operations T21(−2)P12T21(−1) = [ −1 1

3 −2 ] diagonalize this matrix:

SNF(A) = [−1 1

3 −2
][4 0

6 0
] = [2 0

0 0
] ✓

The transpose of SNF(A) is another presentation matrix for G, with respect to a different set of
generators. We conclude

G =
Ze1 ⊕ Ze2

Z(4e1 + 6e2)
≃ Z2 ⊕ Z

Let’s find the generators of G that give us this decomposition into cyclic groups. The original
generators are e1 + K and e2 + K, where K = Z(4e1 + 6e2). P

−1
A is a new presentation matrix

with respect to f and a basis e
′ given by P

−1
= [id]e

′

e . Since e
′
= eP ,

[e′1 e
′
2] = [e1 e2][

2 1

3 1
] = [2e1 + 3e2, e1 + e2]

Note that indeed Ze1 ⊕ Ze2 = Z(2e1 + 3e2)⊕ Z(e1 + e2), so e
′ is a basis. The new basis gives us a

new presentation

Zf1 ⊕ Zf2
[2 0
0 0

]
// Ze′1 ⊕ Ze′2

π // G // 0

In these terms, K = Z(2e′1), e′1 +K = (2e1 + 3e2)+K has order 2, and e
′
2 +K = (e1 + e2)+K has

infinite order:

G =
Ze′1 ⊕ Ze′2
Z(2e′1)

≃
Ze′1

Z(2e′1)
⊕ Ze′2 = Z2 ⊕ Z
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Geometrically, G is a cylinder of discrete points, closed under addition, with a single point p0

of order 2, and a line Z(e1 + e2) winding around the cylinder, combining with p0 to eventually run
through every point. We can replace e1 + e2 with any element of the coset e1 + e2 + Z(2e1 + 3e2);
they all have infinite order. This reflects the fact that in the gcd-identity 4r + 6s = 2, a complete
list of choices for r and s is given by the coefficients of e1 and e2 for any element of the coset
−e1 + e2 + Z(3e1 − 2e2), and the top row of the matrix P

−1 above is then be replaced by [r s],
leading to the new generator.

Geometric summary: Let ℓ = Z(2e1 + 3e2), the line-subgroup containing 4e1 + 6e2, and let
H = Z(4e1 + 6e2) ≤ ℓ. Then ℓ/H ≃ Z2, and the quotient is ℓ/H ⊕ ℓ

′, where ℓ
′
≃ Z is some line. We

generalize based on this example: Any subgroup H = Z(ae1 + be2) lies on a line ℓ ≤ Ze1 ⊕ Ze2,
and ℓ/H is a cyclic group of order d = gcd(a, b), and (Ze1 ⊕ Ze2)/Z(ae1 + be2) will be ℓ/H ⊕ ℓ

′,
isomorphic to Zd ⊕ Z. Note that the subgroup Z has d cosets in Zd ⊕ Z, so on the cylinder there
will be d parallel lines.

Example 4.1.2. Determine the direct sum decomposition of the abelian group

G = ⟨a, b, c ∶ 3a + 9b + 9c = 9a − 3b + 9c = 0⟩

Since G has three generators and two relations, we may write G = Z3/H, where H = ⟨y1, y2⟩ is
the image of the map L ∶ ∐i Zfi ⟶ ∐i Zei given by L(f1) = y1 = 3e1 + 9e2 + 9e3, L(f2) = y2 =

9e1 − 3e2 + 9e3, and L(f3) = 0. Thus we have an exact sequence

Z3 L // Z3 // G // 0

and if A = [L]ef then the presentation matrix is

A
t
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 9 9

9 −3 9

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We can read off the invariant factors by Theorem 2.1.6: d1 = 3, d2 = gcd(108, 54, 90)/3 = 6.
Therefore

G ≃ Z3 ⊕ Z6 ⊕ Z

Explicitly, since A ∼ diag{3, 6, 0}, we have P
−1
AQ = diag{3, 6, 0} for some P,Q ∈ GL3(Z). Let

e
′
= eP and f

′
= fQ be the new bases defined by P and Q. Then diag{3, 6, 0} embeds ∐i Zf

′
i

into ∐i Ze
′
i along the diagonal. To compute the generators in terms of the a, b, c, we determine

P . Commit row reduction on A (not A
t) R2 ↦ R2 − 3R1; R3 ↦ R3 − 3R1; C2 ↦ C2 − 3C1;

R2 ↦ R2 − 2R3; R3 ↦ R3 + 3R2. Thus diag{3, 6, 0} = T32(3)T23(−2)T31(−3)T21(−3)AT21(−3)t ✓

. Thus P
−1

= T32(3)T23(−2)T31(−3)T21(−3), so

P = T21(3)T31(3)T23(2)T32(−3) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

3 −5 2

3 −3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since [a′
b
′

c
′] = [a b c]P by Corollary 3.4.1, we find a

′
= a+3b+3c, b′ = −5b−3c, c′ = 2b+c,

and

G = ⟨a′
, b

′
, c

′
∶ ∣a′∣ = 3, ∣b′∣ = 6⟩
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4.2. Volume of a Lattice Quotient.

Theorem 4.2.1. Suppose G is a free abelian group of rank n, and ı ∶ H → G is a subgroup. Then
G/H is finite if and only if rk(H) = n, and if x and y are bases for G and H, respectively, and
A = [ı]xy , then ∣G/H∣ = det(A).

Proof. The first part is clear: We have an exact sequence

Zn L // Zn π // G/H // 0

where π is the projection and L(Zn) = H ≤ G = Zn. The quotient is finite if and only if rk(L) = n,
which is equivalent to rk(H) = n. Then note that G/H = ∐r

i=1 Z/(di), so ∣G/H∣ = ∏r

i=1 di, and
we just have to compute the di. But then ∣G/H∣ = ∆r = det(A). Nice result! □

Example 4.2.2. Apply to lattices in Rn. By definition a (full) lattice in Rn is a free Z-module of
rank n. Thus a full lattice is isomorphic to Zn. If Zn is the standard lattice in Rn and L ∶ Zn

→

Λ ≤ Zn is a full sublattice, then ∣Zn/Λ∣ = det(L) computes the volume of the n-tope formed by a
basis e = {e1, . . . , en} for Λ. For example, the 2-tope formed by ⟨1, 2⟩ and ⟨−1, 2⟩ has volume 4.

5. Application to Linear Transformations

Let k be a field, k[x] the polynomial ring, V an n-dimensional k-vector space, and T ∈ Endk(V ).
We make V into an k[x]-module under the rule

k[x] × V ⟶ V

(f(x), v) ⟼ f(T )(v)

Let VT denote the k[x]-module V associated to T . Note that VT = V as k-vector spaces, but VT

has the additional structure of scalar multiplication in the bigger ring k[x].

Example 5.0.1. Let V = k
2 with standard basis v = {v1, v2}, and let

A = [T ]v = [ 2 1

−1 3
]

We compute x ⋅ v1 = 2v1 − v2, x
2 ⋅ v1 = 3v1 − 5v2, and x

3 ⋅ v1 = v1 − 18v2. To apply polynomials in
x to elements of V , we just add, for example

(x3
− 2x + 1) ⋅ v1 = −2v1 − 16v2

The basis v shows V is finitely generated as a k-module, since any v ∈ V is a unique k-linear
combination of the vi. This means VT is finitely generated as a k[x]-module as well, since any
v ∈ VT is, of course, in V , so it is trivially also a k[x]-linear combination of the vi. But v is
not a k[x]-basis for VT . In fact, every v ∈ VT is k[x]-linearly dependent, because VT is torsion:
Consider the polynomial p(x) = x

2 − t(A)x + det(A) = x
2 − 5x + 7. This is a nonzero polynomial,

but p(x) ⋅ v = p(A) ⋅ v = 0, since

p(A) = A
2
− 5A + 7I = [ 3 5

−5 8
] − 5[ 2 1

−1 3
] + [7 0

0 7
] = [ 3 5

−5 8
] − [ 10 5

−5 15
] + [7 0

0 7
] = [0 0

0 0
]

In fact p(x) is A’s characteristic polynomial, defined below.
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As noted in Example 5.0.1, since VT is a finitely generated k[x]-module, it is already finitely
generated as a k-module. Therefore Structure Theorem 3.3.3 applies in this situation, and we can
write VT as a direct sum of cyclic k[x] modules. Moreover, we observe that the rank f is 0, since
VT has finite k-dimension, hence VT is a torsion k[x]-module, and by Structure Theorem 3.3.3,

VT ≃

r

∐
i=1

k[x]
(di(x))

for uniquely determined nonconstant monic polynomials di(x) ∈ k[x], satisfying di∣ dj for i < j.

Our goal now is to use this description of VT to prove things about matrices representing T .
For example, recall by Linear Algebra I that T is diagonalizable if and only if VT has a basis of
eigenvectors vi, and then VT = ∐n

i=1 k ⋅ vi. An eigenvector is a v ∈ V such that x ⋅ v = T (v) =

λv for some λ ∈ k. Therefore T is diagonalizable if and only if we have a k[x]-isomorphism
VT ≃ ∐n

i=1
k[x]

(x−λi)
. By Structure Theorem 3.3.3, there is a k[x]-module isomorphism

n

∐
i=1

k[x]
(x − λi)

≃

r

∐
i=1

k[x]
(di(x))

We will show that this is equivalent to dr(x) splitting into distinct linear factors.

5.1. Quotients of k[x]. All ideals of k[x] have form (f(x)) for some f(x) ∈ k[x]. We summarize
some general observations about the quotient in the following theorem.

Theorem 5.1.1 (Kronecker). Let k be a field, k[x] the polynomial ring, and f ∈ k[x] a monic
polynomial of degree n ≥ 1. The quotient ring k[x]/(f) is a k-vector space of dimension n, with
k-basis {1, x̄, . . . , x̄n−1}, where x̄ = x + (f). The element x̄ is a root of f(x) in k[x]/(f).

Proof. The quotient k[x]/(f) contains the field k as a subset via the map a ↦ a + (f). Therefore
k[x]/(f) is a k-vector space. Let x̄ = x + (f). Then f(x̄) = 0 in k[x]/(f), and x̄

n is in the k-span
of {1, x̄, . . . , x̄n−1}: if f(x) = a0+a1x+⋯+an−1x

n−1+x
n, then x̄

n
= −(a0+a1x̄+⋯+an−1x̄

n−1). It
follows that this set spans k[x]/(f) over k. It is linearly independent: c0 + c1x̄+⋯+ cn−1x̄

n−1
= 0

implies f(x) ∣ c0 + c1x+⋯+ cn−1x
n−1, and since k[x] is a Euclidean domain, this forces c0 + c1x+

⋯+ cn−1x
n−1

= 0, hence ci = 0 for all i. Therefore {1, x̄, . . . , x̄n−1} is a k-basis. □

5.2. Polynomials Associated to a Linear Transformation.

Definition 5.2.1. Let V be an n-dimensional k-vector space, T ∈ Endk(V ), and let d1, d2, . . . , dr

be a complete list of the nonconstant monic polynomial invariants of VT in k[x], with di∣dj for
i < j, as in Structure Theorem 3.3.3. Then

(a) The minimum polynomial mT (x) of T is the invariant dr(x).
(b) The characteristic polynomial pT (x) of T is the product ∏r

i=1 di(x).

Remark 5.2.2. (i) Since mT (x) ⋅ VT = 0 and pT (x) ⋅ VT = 0, the linear transformations
mT (T ) and pT (T ) both equal zero. Once we have shown that pT (x) is the usual charac-
teristic polynomial, the latter result will become the Cayley-Hamilton Theorem: A linear
transformation is a root (in Endk(V )) of its characteristic polynomial.
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(ii) Since VT = ∐r

i=1 k[x]/(di), and di∣dj for i < j, mT (x) is the polynomial f(x) of smallest
degree such that f(T ) = 0. Since k[x] is a PID, the set Annk[x](VT ) is a principal ideal
containing mT (x), and since mT (X) has smallest degree, it is the generator.

(iii) We know that k[x]/(di) is a k-vector space with basis {1, x, x2
, . . . , x

deg(di)−1}. Therefore
dim k(k[x]/(di)) = deg(di). Since dim k(V ) = n = ∑i deg(di), the degree of the character-
istic polynomial is deg(pT (x)) = dim k(V ) = n.

5.3. Computation of Invariants of a Linear Transformation. Let V be an n-dimensional k-
vector space, T ∈ Endk(V ). We would like to compute mT (x) and pT (x), and all of the invariants
in between. To do this we need a presentation matrix for VT , so we can apply Theorem 2.1.6.
Recall we have an exact sequence

k[x]n k[x]n VT 0
L π

where L ∈ Endk[x](k[x]n) = Mn(k[x]). Let e be the preimage of a basis v for V , and extend T to
k[x]n by setting [T ]e = [T ]v = (aij) ∈ Mn(k). We’ll show L = x − T , so

[L]e = xIn − (aij) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x − a11 −a12 ⋯ −a1n

−a21 x − a22 ⋯ ⋮

⋮ ⋱ −an−1n

−an1 ⋯ −ann−1 x − ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note π, T , and multiplication by x are all k[x]-linear. Therefore π◦(x−T )k[x]n = 0, so x−T = 0 is
a relation defining VT from k[x]n. This means that VT is described by the generators and relations

VT = ⟨e1, . . . , en ∶ xei = T (ei) ∶ 1 ≤ i ≤ n⟩

where T (ei) is a k-linear combination of the other ej . We’ll prove the highly plausible fact that these
are the only relations, meaning that if π(∑i fi(x)ei) = 0 for some fi(x) ∈ k[x], then ∑i fi(x)ei is
contained in the submodule (x − T )(k[x]n) ⊂ k[x]n.

Example 5.3.1. Let T ∈ Endk(k2) be given in the standard basis v by T (v1) = 2v1 − v2 and
T (v2) = v1 + 3v2, as in Example 5.0.1. Let e be the standard basis for k[x]2, and define π ∶

k[x]2 ⟶ k
2 by π(ei) = vi. We show that (x − T )(k[x]2) is contained in ker(π). We compute

(x−T )(e1) = xe1−T (e1) = xe1−(2e1−e2) = (x−2)e1+e2, and similarly (x−T )(e2) = −e1+(x−3)e2.
Since π((x − 2)e1 + e2) = (T − 2)(v1) + v2 = 0 and π(−e1 + (x − 3)e2) = −v1 + (T − 3)v2 = 0,
(x − T )(k2) ⊂ ker(π). If these are the only relations then

VT = ⟨e1, e2 ∶ xe1 = 2e1 − e2, xe2 = e1 + 3e2⟩

Notice we are just reading off the columns of the (transpose of) the presentation matrix matrix

[x − T ]e = xI −A = [x − 2 −1

1 x − 3
]

Theorem 5.3.2. Let V be an n-dimensional k-vector space, made into a k[x]-module VT via
T ∈ Endk(V ). Extend T from Endk(V ) to Endk[x](k[x]n) as above, with e the standard basis for
k[x]n. Then the sequence

0 // k[x]n x−T // k[x]n π // VT
// 0

is exact, and y = {yj = (x − T )ej ∶ 1 ≤ j ≤ n} is a basis for ker(π) = (x − T )k[x]n. In particular
[x − T ]te is a presentation matrix for VT .
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Proof. Exactness at VT means π is surjective, which is how π was defined in the first place. Exact-
ness at the left k[x]n is because f = 0, which forces the rank of the presentation matrix, whatever
it is, to be n.

Exactness at the right k[x]n means ker(π) = (x−T )k[x]n = k[x][y]. Since x and T are identified
on VT via π, k[x][y] ⊂ ker(π) as shown above. It remains to show this is the only relation, i.e.,
that y spans ker(π). We claim k[x]n = k[x][y] + k[e]. Since xej = yj + T (ej), and T (ej) is a
k-linear combination of the ei, we have xej ∈ k[x][y]+ k[e]. By induction x

m
ej ∈ k[x][y]+ k[e],

for all m, hence g(x)ej ∈ k[x][y]+ k[e] for any g(x) ∈ k[x], hence ∑i gi(x)ei ∈ k[x][y]+ k[e] for
any a = ∑i gi(x)ei ∈ k[x]n. This proves the claim.

If a ∈ k[x]n is in ker(π), and a ∈ ∑i biei + k[x][y], then π(a) = π(∑i biei) = ∑i bivi = 0, with
bi ∈ k, hence bi = 0 for all i, since v is a basis. Therefore a ∈ k[x][y], which shows ker(π) ⊂ k[x][y].
We conclude ker(π) = k[x][y].

Since y obviously spans k[x][y] over k[x], it remains to show the set y is linearly indepen-
dent. Suppose ∑j hj(x)yj = 0, with some hj(x) ≠ 0. Since yj = xej − T (ej), ∑n

j=1 hj(x)xej =

∑n

j=1 hj(x)T (ej) = ∑n

i,j=1 hj(x)aijei. Since the ei are k[x]-linearly independent, we conclude
hi(x)x = ∑n

j=1 hj(x)aij . Let r be such that hr(x) has maximal degree among the hi(x), then
deg(hr(x)x) > deg(∑j hj(x)aij), a contradiction. Therefore y is linearly independent, therefore it
is a basis for k[x][y], hence for ker(π). Since the sequence is exact at k[x]n, it follows that [x−T ]te
is the presentation matrix for VT . □

Remark 5.3.3. Note that since VT is a torsion k[x]-module, the rank of x − T is n, hence the
determinant of [x−T ]e is nonzero. Theorem 5.3.2 allows us to compute all of the invariants di(x),
by computing the gcd’s of the degree-i minors of xI−A, and applying Theorem 2.1.6. In particular:

Corollary 5.3.4. Let A ∈ Mn(k) be a matrix representing T . Then pT (x) = det(xI −A).

Proof. By definition pT (x) is the product ∏r

i=1 di(x), where di is the i-th invariant of VT in Struc-
ture Theorem 3.3.3. By Theorem 2.1.6, this equals ∆n, the determinant of any matrix representing
x − T . □

Example 5.3.5. We continue Example 5.0.1, with V = k
2, e = {e1, e2} the standard k-basis, and

A = [T ]e = [ 2 1

−1 3
]

We have an exact sequence k[x]2 xI−A // k[x]2 π // k
2
⟶ 0 . Applying Theorem 2.1.6 to

xI −A = [x − 2 −1

1 x − 3
]

we find ∆1 = 1, and ∆2 = pA(x), so we have one nonzero nonunit d1(x) = pA(x). Therefore
mA(x) = pA(x) = x

2 − 5x + 7, and

VT ≃
k[x]

(x2 − 5x + 7)
We know by this that SNF(xI −A) = diag{1, x2 − 5x + 7}, so for bases e

′ and f
′ for k[x]2,

[xI − T ]e
′

f ′ = [1 0

0 x
2 − 5x + 7

]
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is the (transpose of the) presentation matrix of VT . By Example 2.1.3,

[ 1 0

x − 3 1
]

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
P

−1

[x − 2 −1

1 x − 3
]

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
xI −A

[ 0 1

−1 x − 2
]

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
Q

= [1 0

0 x
2 − 5x + 7

]

Thus P
−1

= [id]e
′

e and Q = [id]ef ′ . We compute e
′
1 = e1 + (3 − x)e2 and e

′
2 = e2, and f

′
1 = −e2,

f
′
2 = e1 + (x − 2)e2 for the bases of k[x]2 with respect to which we now have an exact sequence

0 // [k[x]2]f ′
[1 0

0 x
2−5x+7

]
// [k[x]2]e′

π // k
2 // 0

By Corollary 3.4.1, the new set of generators for VT is v = eP , so v1 = π(e′1) = e1 + (3 −A)e2 = 0,
and v2 = π(e′2) = e2. Only one generator, because the module is cyclic.

5.4. Similarity. Let V be an n-dimensional k-vector space. A basis e for V sets up a 1-1 corre-
spondence between Endk(V ) and Mn(k), given by T ⟷ [T ]e, under which the j-th column of
[T ]e is the n-tuple of coefficients of T (ej), and T (ej) is the linear combination of the ei given by
the j-th column vector of [T ]e. Thus we have [T ]e([v]e) = [T (v)]e. We say the matrix [T ]e
represents T with respect to the basis e.

In the land of linear algebra, linear transformations or matrices are similar if they are conjugate
under matrix multiplication in a group-theoretic sense, even though (Endk(V ), ⋅ ) is a multiplicative
monoid, not a group. If S, T ∈ Endk(V ) are conjugate via M ∈ Autk(V ), then writing k

n
= [V ]e,

A = [S]e, B = [T ]e, and P = [M]e, we have

V
S //

M

��

V

M

��

k
n A //

P

��

k
n

P

��

V
T
// V k

n

B
// k

n

The equivalence classes in either case are called similarity classes.

Since P is invertible, it can be viewed as a basis change matrix P = [id]fe. Then if A = [T ]e,
and B = PAP

−1, we have B = [T ]f . Thus distinct A,B ∈ Mn(k) are similar if and only if they
represent the same linear transformation with respect to different bases of V . Conversely, distinct
S and T are similar if and only if they are represented by the same matrix with respect to different
bases. For if T = MSM

−1 with M ∈ Autk(V ), then viewing M as [id]fe, for some new basis f , we
compute

[T ]e = [MSM
−1]e = [M]e[S]e[M]−1e = [id]fe[S]e[id]ef = [S]f

Theorem 5.4.1. Let k be a field, A,B ∈ Mn(k). Let VA and VB denote the k-vector space V made
into a k[x]-module via A and B, respectively. Then the following are equivalent.

(a) A and B are similar (in Mn(k)).
(b) VA ≃ VB as k[x]-modules.
(c) VA and VB have the same (monic) invariant factors.
(d) SNF(xI −A) = SNF(xI −B).
(e) xI −A and xI −B are equivalent (in Mn(k[x])).
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Proof.

(a) ⇔ (b) ∶ Suppose B = PAP
−1 for P ∈ GLn(k). Then P ∶ VA → VB is a k-linear transformation, but

it is also a k[x]-module homomorphism: for since A and B are similar, Bi
= PA

i
P

−1, and
we have P (f(x)v) = Pf(A)(v) = f(B)P (v) = f(x)P (v) ✓. Since P is invertible, VA ≃ VB

as k[x]-modules, which is (b). Conversely, suppose VA ≃ VB as k[x]-modules. Since an
isomorphism is k[x]-linear, it is also k-linear, so it is represented by some P ∈ GLn(k).
Then P (xv) = (PA)(v) = xP (v) = (BP )(v) for all v, hence PA = BP , so B = PAP

−1,
which is (a).

(b) ⇔ (c) ∶ By Theorem 3.3.3 (and Theorem 3.6.1) VA and VB are each isomorphic to a coproduct of
cyclic modules R/(di), where the di are uniquely determined. Therefore VA ≃ VB if and
only if they have the same di’s.

(c) ⇔ (d) ∶ The di’s of A and B are defined by SNF(xI −A) and SNF(xI −B).
(d) ⇔ (e) ∶ Matrices are equivalent if and only if they have the same invariant factors by Theorem 2.1.6.

□

Remark 5.4.2. If A ≃ B then pA(x) = pB(x) by Theorem 5.4.1. The converse is false for n ≥ 2.

Example 5.4.3. Determine which of the following matrices over Q are similar.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 14

0 3 −7

0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −4 85

1 4 −30

0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1

0 2 −1

0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
By Theorem 5.4.1 it is enough to compute the invariants of the Q[x]-modules VA, VB , VC . Easy to
check that pA(x) = pB(x) = pC(x) = (x − 2)2(x − 3), so the product of the invariants of VA, VB ,
and VC are the same. By combinatorics, there are two possibilities: d1 = (x − 2), d2 = m(x) =

(x−2)(x−3), and d1 = m(x) = (x−2)2(x−3). It’s easy to check that A satisfies (x−2)(x−3) = 0,
but B and C do not. Therefore

VA ≃
Q[x]
(x − 2) ⊕

Q[x]
(x − 2)(x − 3) VB ≃ VC ≃

Q[x]
(x − 2)2(x − 3)

By Theorem 5.4.1, A is not similar to B, but B is similar to C.

Example 5.4.4 (Trick for Computing pT (x)). The characteristic polynomial is invariant under
matrix similarity, so it is associated to a linear transformation T , and can be computed with
respect to any matrix representing T . By Corollary 5.3.4, pT (x) = det(xI − A) for any matrix
A ∈ Mn(k) representing T . Here’s a shortcut that computes the coefficients of pT (x) directly from
the coefficients of A.

For each subset I = {i1, . . . , im} of {1, . . . , n}, with m ≥ 0, let MI be the “diagonal” minor of A
obtained by deleting rows I and columns I, and let

ci = ∑
I∶∣I∣=n−i

MI

the sum of the “diagonal” minors of degree n− i. For example cn−1 = t(A), and c0 = det(A). Then

pA(x) = x
n
− cn−1x

n−1
+⋯+ (−1)nc0

Note the ci are symmetric functions in the coefficients. We can prove it by expanding det(xI −A)
along the first row, and gathering the coefficients of like powers of x.
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Example 5.4.5. We can use Theorem 5.4.1 to compute the number of conjugacy classes of the
group GLn(Fq), where q is a power of a prime. This group has order

∣GLn(Fq)∣ = (qn − 1)(qn − q)(qn − q
2)⋯(qn − q

n−1)

To verify this, note first that the number of vectors in Fn
q is q

n, so there are q
n − 1 nonzero vectors.

Choose one for the first row, R1, then it has q multiples, so we are left with q
n − q candidates for

the second row. Choose one, R2. The number of vectors in the linear span FqR1 + FqR2 is q
2, so

we are left with q
n − q

2 choices for the third row. Continuing in this way gives the formula.

The number of conjugacy classes in GLn(Fq) is the number of similarity classes, in this group.
Each similarity class is completely determined by its invariant factors d1, . . . , dr, with di∣dj for i < j,
and ∑i deg(di) = n. Thus we can count them by choosing a monic characteristic polynomial of
degree n, and using combinatorics to categorize possible arrangements of its factors into invariants.
Since we are only interested in the invertible elements of Mn(Fq), by (5.4.4) we restrict to the
characteristic polynomials with nonzero constant term.

For example, ∣GL2(F3)∣ = 8 ⋅ 6 = 48. There are 9 monic polynomials of degree 2 over F3, of
which 6 have nonzero constant term. If the polynomial is either irreducible or has two distinct
linear factors, then its minimum polynomial equals its characteristic polynomial, and there is only
one corresponding set of invariants. If the polynomial is a square, then there are two. There are
2 monic squares of degree 2 with nonzero constant term: (x + 1)2 and (x + 2)2. Thus we have
4 + 2 ⋅ 2 = 8 conjugacy classes.

6. Eigenvalues, Vectors, and Spaces

6.1. Definitions. Let k be a field, V an n-dimensional k-vector space, T ∈ Endk(V ), and let VT

denote V made into a k[x]-module via T . Eigenvalues, eigenvectors, and eigenspaces are important
features of linear transformations, and they play a role in diagonalization and most of the canonical
forms. Recall the definitions:

Definition 6.1.1. Let V be an n-dimensional k-vector space, and T ∈ Endk(V ).

◦ An eigenvalue of T is an element λ ∈ k for which ker(T − λ) is nonzero.
◦ The eigenspace of an eigenvalue λ is the (nonzero) subspace Eλ = ker(T − λ) ⊂ V .
◦ An eigenvector of an eigenvalue λ is any element of Eλ.
◦ An eigenbasis is a basis of eigenvectors.
◦ T is diagonalizable if V has an eigenbasis.
◦ The algebraic multiplicity µa(λ) is the multiplicity of λ as a root of pT (x).
◦ The geometric multiplicity µg(λ) is dim kEλ.

6.2. Main Example. To examine these definitions in the k[x]-module setting, let V equal the
coproduct of cyclic k[x]-modules k[x]/(di(x)). For any λ ∈ k, multiplication by x − λ is a linear
transformation on V , i.e., x − λ ∈ Endk(V ), and we have an exact sequence

0 // Eλ
//

r

∐
i=1

k[x]
(di(x))

x−λ //

r

∐
i=1

k[x]
(di(x))

A vector has the form v = f̄1(x)+⋯+f̄r(x), where f̄i(x) is a coset representative for fi(x)+(di(x)).
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Multiplication by x − λ evidently takes each k[x]/(di(x)) to itself. We say it stabilizes each
summand. Since x − λ stabilizes the summands, v is in Eλ if and only if (x − λ)f̄i(x) = 0 for each
i, i.e., each f̄i(x) is in Eλ. Therefore

(6.2.0.1) Eλ = ∐
i

Eλ ∩
k[x]

(di(x))

Therefore we restrict x − λ to a summand, and study the sequence

0 // Eλ
//
k[x]
(d(x))

x−λ //
k[x]
(d(x))

Let e = µa(λ), so d(x) = (x − λ)eg(x), with x − λ ∤ g(x). Define Aλ ∶= ker((x − λ)e), so

0 // Aλ
//
k[x]
(d(x))

(x−λ)e
//
k[x]
(d(x))

is exact. Now we make some observations, all with V = k[x]/(d(x)).

(i) λ is an eigenvalue for x if and only if x−λ ∣ d(x): For by the gcd identity, x−λ is a unit in V

if and only if gcd(x − λ, d(x)) = 1, if and only if multiplication by x − λ is an automorphism,
and Eλ = (0).

(ii) Since gcd(x − λ, g(x)) = 1, by Chinese Remainder Theorem we have

V =
k[x]

(x − λ)e ⊕
k[x]
(g(x))

and λ is not an eigenvalue for the second summand by (i). Since x−λ stabilizes each summand
and is an automorphism on the second, Eλ appears already in the restricted exact sequence

0 // Eλ
//

k[x]
((x − λ)e)

x−λ //
k[x]

((x − λ)e)

(iii) If e ≥ 1 then dim kEλ = 1, and Eλ has k-basis {(x− λ)e−1}: For (x− λ)e ∣ (x− λ)f(x) if and
only if (x − λ)e−1 ∣ f(x) by definition of divides, and since we may assume deg f(x) ≤ e − 1,
we must have f(x) = c(x − λ)e−1 for some c ∈ k. In particular µg(λ) ≤ µa(λ).

(iv) µa(λ) = dim kAλ: (x − λ)e kills the factor k[x]/((x − λ)e), which has dimension e, and is an
automorphism of k[x]/(g(x)). Thus we have a (split) exact sequence

0 // Aλ
//
k[x]
(d(x))

(x−λ)e
//
k[x]
(g(x))

// 0

(v) x is diagonalizable if and only if d(x) splits into distinct linear factors: Since µg(λ) = 1 and
µg(λ) ≤ µa(λ) by 6.2(iii), and µa(λ) is the multiplicity of x−λ in d(x) by definition, the only
way to get ∑λ µg(λ) = n is to have µa(λ) = 1 and ∑λ µa(λ) = n, which is the claim.

To summarize:

Theorem 6.2.1. Let V be a finite-dimensional k-vector space, and let T ∈ Endk(V ). Then

(a) λ ∈ k is an eigenvalue for T if and only if (x − λ) ∣ pT (x).
(b) µg(λ) = ∣{i ∶ x − λ ∣ di(x)}∣.
(c) µg(λ) ≤ µa(λ), and ∑λ µa(λ) ≤ dim kV .
(d) T is diagonalizable if and only if mT (x) splits into distinct linear factors.
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Proof. Only (d) is not immediate from the previous discussion. Let Vi be the i-th summand in
V ’s decomposition of Theorem 3.3.3. If T is diagonalizable then V has an eigenbasis, and each
v ∈ Vi can be written v = ∑λ wλ for wλ ∈ Eλ. Since x−λ stabilizes the summands, we may assume
wλ ∈ Eλ∩Vi by (6.2.0.1). Therefore the eigenvectors of Vi span Vi, hence each Vi has an eigenbasis,
and in particular T ∣Vr

is diagonalizable. Consequently dr(x) = mT (x) splits into distinct linear
factors by (v). Conversely if mT (x) splits into distinct linear factors then so does each di(x), since
they all divide dr(x), and so each Vi has an eigenbasis by (v). The union of these bases is an
eigenbasis for V , showing T is diagonalizable. □

Remark 6.2.2. Since dr(x) = mT (x) ∣ pT (x), and pT (x) = det(xI − A) for any matrix A repre-
senting T , mT (x) is often deducible in small degrees by just substituting A into different candidates
for mT (x) and seeing if the result is zero. On the other hand, mT (x) is always directly computable
by Theorem 2.1.6 as ∆r∆

−1
r−1, where ∆i is the gcd of the degree-i minors of xI −A.

Example 6.2.3. The matrices

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 6 0

−3 −4 0

−2 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 2

−10 6 −14

−6 3 −7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

are similar, and diagonalizable. For we compute pA(x) = pB(x) = x
3 − 2x

2 − x + 2. We factor this
by eye into (x−1)(x+1)(x−2). Since the factors are all distinct, this is the minimum polynomial,
and so A and B are similar, and diagonalizable.

6.3. Finding the Basis Change Matrix P for Diagonal Form. Suppose T ∈ Endk(V ) and
A = [T ]e ∈ Mn(k). The procedure is to

(a) Find the eigenvalues, either from a description of T or by explicitly factoring pT (x).
(b) Find a basis for each Eλ = ker(λI −A) using Gauss-Jordan elimination; let f = {v1, . . . , vn} be

the eigenbasis for V .
(c) Then D = P

−1
AP is diagonal for P = [v1 ⋯ vn]. The reason is that P = [id]ef .

7. Canonical Forms

Let V be an n-dimensional k-vector space, and let T ∈ Endk(V ). Each basis e for V determines a
matrix A = [T ]e representing T . A k-basis e for V that determines a given A probably has nothing
to do with the decomposition of the k[x]-module VT in Theorem 3.3.3. But the decomposition
itself suggests certain k-bases with respect to which T has a nice form, called a canonical form.
There are many canonical forms: rational, Jordan, Weyr, Frobenius, and others. Each has its own
strengths.

We will study the rational and Jordan canonical forms. Diagonal form is a special case of Jordan
canonical form, but we treat it separately because often we just want to show that a matrix or linear
transformation is diagonalizable. Many important types of linear transformations, such as those
represented by real symmetric matrices, are diagonalizable.
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7.1. Main Example (cont’d). Suppose T = x and V = k[x]/(d(x)).

I. Suppose d(x) = x
n + an−1x

n−1 +⋯+ a1 + a0. Then the matrix of x with respect to the basis
v = {1, x, . . . , xn−1} for V = k[x]/(d(x)) is

[x]v = C(d(x)) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0 −a0

1 0 ⋯ 0 −a1

0 1 ⋯ 0 −a2

⋮ ⋮ ⋱ ⋱ ⋮ ⋮

0 −an−2

0 0 ⋯ 0 1 −an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
called a companion matrix of di(x).

II. Suppose d(x) = ∏t

j=1(x − λj)ej . By Chinese Remainder Theorem,

k[x]
(d(x)) =

t

∐
j=1

k[x]
((x − λj)ej )

Let Vj = k[x]/((x − λj)ej ). The elements wi = (x − λj)ej−i ∈ Vj define a basis wj =

{w1, . . . , wej }: The wi are linearly independent since {1, x, . . . , xej−1} are linearly independent;
each introduces a higher power of x, up to x

ej−1. The fact that they span is easy. To
compute [x∣Vj

]wj
we compute x ⋅ wj for each j, for these are the column vectors. Since

(x − λj)w1 = (x − λj)ej = 0 in V , x ⋅ w1 = λjw1. Since (x − λj)wi = wi−1 for i ∶ 2 ≤ i ≤ ej ,
x ⋅ wi = wi−1 + λjwi. Therefore

[x∣Vj
]wj

= Jej (λj) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λj 1 0 ⋯ 0

0 λj 1 ⋱ ⋮

⋮ 0 λj ⋱ 0

⋮ ⋮ ⋱ ⋱ 1

0 0 ⋯ 0 λj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Jej (λj) is called a Jordan block. Since x stabilizes each Vj , we have x = ∐j x∣Vj

, and if
w = ⋃j wj ,

[x]w =

t

∐
j=1

[x∣Vj
]wj

=

t

∐
j=1

Jej (λj)

7.2. Rational Canonical Form.

Theorem 7.2.1 (Rational Canonical Form). Every T ∈ Endk(V ) has the rational canonical form

[T ]e =

r

∐
i=1

C(di(x))

where C(di(x)) is the companion matrix of 7.1(I). This form is uniquely determined.

Proof. We again may reduce to the case V = k[x]/(di(x)) and T = x, where the result follows from
7.1(I). Uniqueness is by Structure Theorem 3.3.3. □

Notation. We write RCF(A) for the rational canonical form of a matrix A ∈ Mn(k).
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Example 7.2.2. From Example 6.2.3, the rational canonical forms of

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 6 0

−3 −4 0

−2 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 2

−10 6 −14

−6 3 −7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
are RCF(A) = RCF(B) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −2

1 0 1

0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

7.3. Finding the Basis Change Matrix P for RCF(A). To produce a rational canonical form
for a given A we just have to compute the di(x), from the minors of xIn−A. To produce B ∈ GLn(k)
such that B

−1
AB is in rational canonical form is more involved: Let v be the standard k-basis of

V = k
n, and e the corresponding basis of k[x]n. First find SNF(xI − A) using row/column

operations: we find P,Q ∈ GLn(k[x]) such that

P
−1(xI −A)Q = diag{1, . . . , 1

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
t

, d1, . . . , dr}

Then P = [id]ee′ for some new basis e′, and v
′
= vP is a new set of generators of V , by Corollary 3.4.1,

with v
′
t+i generating the i-th summand, which is isomorphic to k[x]/(di(x)).

As in Example 5.3.5, v′ may not be a k-basis. Since P is in GLn(k[x]), the elements of v′ are
k[x]-linear combinations of the elements of v, where x acts on V as A. In general the resulting
v
′
i are not linearly independent. In fact, we have v

′
1 = ⋯ = v

′
t = 0, where t is the number of 1’s.

Since t+ r = n, if t > 0 we have r < n generators {v′t+1, . . . , v′t+r} of the respective summands of the
k[x]-module V . Let mi = deg(di). Each one generates a Kronecker k-basis:

{{v′t+1, xv′t+1, . . . , xm1−1v
′
t+1}, . . . , {v′t+r, xv′t+r, . . . , xmr−1v

′
t+r}}

Since x acts as A, we can compute all of these elements explicitly in terms of {v′1, . . . , v′r}, hence in
terms of v = {v1, . . . , vn}. Let v

′′ be this new k-basis, and let B = [id]vv′′ . Then RCF(A) = B
−1
AB.

Example 7.3.1. Let V = k
2, with standard basis v, and let A = [1 2

3 4
]. Then

xI −A = [x − 1 −2

−3 x − 4
]

and we compute d1(x) = 1 and d2(x) = pA(x) = x
2−5x−2. By Theorem 7.2.1, we know that there

exists a matrix B ∈ GL2(k) such that B
−1
AB = RCF(A) = [0 2

1 5
]. What is B?

First put xI2 − A into diagonal form. We use the operations C1 ↔ C2, C1 ↦ − 1

2
C1, C2 ↦

C2 − (x − 1)C1, R2 ↦ R2 − (− 1

2
x + 2)R1, R2 ↦ 2R2 to get

[1 0

0 x
2 − 5x − 2

] = [1 0

0 2
][ 1 0

1

2
x − 2 1

][x − 1 −2

−3 x − 4
][0 1

1 0
][−

1

2
0

0 1
][1 −x + 1

0 1
]

= [ 1 0

x − 4 2
]

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
P

−1

[x − 1 −2

−3 x − 4
]

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
xI −A

[ 0 1

− 1

2

1

2
x − 1

2

]
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Q

Thus P = [id]ee′ = [ 1 0

− 1

2
x + 2 1

2

] and Q = [id]ff ′ = [ 0 1

− 1

2

1

2
x − 1

2

]. The k-basis v for V is a set

of generators for the k[x]-module V . We expect the new set of generators v
′
= vP to generate
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the summands of V , and in this case there is only one summand. Indeed, since x acts as A,
v
′
1 = v1 + (− 1

2
x + 2)v2 = 0 and v

′
2 =

1

2
v2. To get the rest of the desired k-basis for V , we apply x

to the generator of each summand until we have a k-basis for that summand. In this case, the new
k-basis of V is v

′′
= {v′2, x ⋅ v′2} = { 1

2
v2, x ⋅ 1

2
v2} = { 1

2
v2, v1 + 2v2}. Thus

B = [id]vv′′ = [0 1
1

2
2
]

and

B
−1
AB = [−2 1

1

2
0
][1 2

3 4
][0 1

1

2
2
] = [0 2

1 5
] ✓

7.4. Jordan Canonical Form. If pT (x) does not split into linear factors, then T is clearly not
diagonalizable. But what if it does split into linear factors. Is it diagonalizable then? The answer
is no. The Jordan canonical form is the closest we can get. Since we may construct a finite-degree
splitting field for over k for pT (x), this form applies to all matrices over k, as long as we allow
coefficients in some finite field extension of k.

Theorem 7.4.1 (Jordan Canonical Form). Suppose T ∈ Endk(V ), and mT (x) splits into linear
factors in k[x]. Let di(x) = ∏t

j=1(x − λj)eij for eij ≥ 0 and distinct λj. Then T has the Jordan
canonical form

[T ]w =

t

∐
j=1

r

∐
i=1

Jeij (λj)

where Jeij (λj) is the Jordan block of 7.1(II). This form is uniquely determined.

Proof. We reduce as usual to V = k[x]/(di(x)) and T = x, where the result follows from 7.1(II).
Uniqueness follows from the uniqueness of the elementary divisors. □

Notation. We write JCF(A) for the Jordan canonical form of a matrix A ∈ Mn(k).

Definition 7.4.2. Let V be an n-dimensional k-vector space, and T ∈ Endk(V ).

◦ The generalized eigenspace of the eigenvalue λj of T is the (x − λj)-primary subspace

E
g
λj

= ker((x − λj)erj ) =
r

∐
i=sj

k[x]/(x − λj)eij

◦ A generalized eigenvector of an eigenvalue λj is any element of Eg
λj

.
◦ A generalized eigenbasis of V is a k-basis that consists of generalized eigenvectors.

Remark 7.4.3. By Theorem 6.2.1(b), µa(λj) = ∑r

i=1 eij is the sum of the degrees of the λj-Jordan
blocks, and µg(λj) = ∣{eij ∶ eij ≠ 0}∣ is the number of nontrivial λj-Jordan blocks.

Example 7.4.4. Find the rational and Jordan canonical forms for

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 14

0 3 −7

0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −4 85

1 4 −30

0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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We’ve seen that pA(x) = pB(x) = x
3 − 7x

2 + 16x − 12 = (x − 2)2(x − 3), mA(x) = (x − 2)(x − 3),
and mB(x) = pB(x). Therefore

VA ≃
k[x]

(x − 2) ⊕
k[x]

(x2 − 5x + 6) ≃
k[x]

(x − 2) ⊕
k[x]

(x − 2) ⊕
k[x]

(x − 3)

VB ≃
k[x]

x3 − 7x2 + 16x − 12
≃

k[x]
(x − 2)2 ⊕

k[x]
(x − 3)

Hence

RCF(A) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0

0 0 −6

0 1 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
RCF(B) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 12

1 0 −16

0 1 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

JCF(A) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0

0 2 0

0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
JCF(B) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0

0 2 0

0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note the algebraic and geometric multiplicites in each case.

Example 7.4.5. Find all possible Jordan canonical forms for M3(C), thereby classifying the linear
transformations of C3. Fix A ∈ M3(C). Then pA(x) = (x − λ1)(x − λ2)(x − λ3) for λi ∈ C. Either
the λi are all distinct, or (WLOG) λ1 = λ2 ≠ λ3, or all three are equal. We have seen JCF(A) is
diagonal in the first case. In the second case there are two possibilities: mA(x) = (x− λ1)(x− λ3),
or mA(x) = pA(x). In the third case, there are three: mA(x) = (x − λ1), mA(x) = (x − λ1)2, and
mA(x − λ1)3. So here’s the list:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0

0 λ1 0

0 0 λ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0

0 λ1 0

0 0 λ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 1 0

0 λ1 0

0 0 λ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0

0 λ1 1

0 0 λ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 1 0

0 λ1 1

0 0 λ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note the generalized eigenspaces and algebraic/geometric multiplicities in each case. If an element
of M3(C) is selected at random, which of these is it most likely to represent?

Example 7.4.6. Suppose

V =
k[x]

(x − λ)2 ⊕
k[x]

(x − λ)3

Then px(x) = (x − λ)5, and

JCF(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0 0 0

0 λ 0 0 0

0 0 λ 1 0

0 0 0 λ 1

0 0 0 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The algebraic multiplicity of λ is five, the geometric multiplicity is two.
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7.5. Finding the Basis Change Matrix P for JCF(A). Suppose A = [T ]e for some k-basis e,
and pT (x) splits into linear factors. Then A has a Jordan canonical form over k, and JCF(A) =

PAP
−1 for some P = [id]we ∈ GLn(k). We can write down JCF(A) if we know the invariants di:

we get a block Jeij (λj) for each maximal divisor (x − λj)eij of di.

Definition 7.5.1. If V ≃ k[x]/(x−λ)n, the basis w for V in 7.1(II), which satisfies wj−1 = (x−λ)wj ,
for j ∶ 2 ≤ j ≤ n, is called a cycle rooted on (the eigenvector) w1. A cycle is generated by any
wn ∶ (x − λ)nwn = 0 and (x − λ)n−1

wn ≠ 0, and then wn−1 = (x − λ)wn, . . . , w1 = (x − λ)w2.

The columns P
−1 are the disjoint union of the cycles rooted in eigenvectors for each Jordan

block, as in Definition 7.5.1.

To find a weij ∈ V such that (x − λj)eijweij = 0 but (x − λj)eij−1 ≠ 0, use elementary row
operations to produce a basis of ker((A − λjI)eij ), computing (x − λj)eij−1, and choosing weij

from the basis by inspection. If there is more than one λj-Jordan block then for each successive
algorithm we choose a generalized eigenvector for λj that is not in the span of the ones we have
already found. This is feasible, if tedious, since we can compute a basis of the kernel of (x−λj)erj .

Example 7.5.2. (a) Let k = R. Find the possible Jordan canonical forms for

A = [a b

c d
]

Clearly the answer is

[λ1 0

0 λ2

], [λ 0

0 λ
], [λ 1

0 λ
]

Let’s analyze this further. We compute pA(x) = x
2 − (a + d)x + (ad − bc). We have distinct roots

unless ∆ = (a+ d)2 − 4(ad− bc) = a
2 − 2ad+ 4bc+ d

2
= 0. This defines a hypersurface H in A4(R),

which has measure zero. By Theorem 6.2.1, JCF(A) is diagonal if and only if mA(x) splits into
linear factors. Therefore JCF(A) = diag{λ1, λ2} if A /∈ H, and if A ∈ H then JCF(A) = diag{λ, λ}
if and only if mA(x) is linear, i.e., λI −A = 0, i.e., A is already diagonal.

(b) Let A = [ 0 1

−1 0
]. Find JCF(A) and the basis change matrix P such that PAP

−1
= JCF(A).

We compute mA(x) = pA(x) = x
2 + 1 = (x − i)(x + i), so by Theorem 6.2.1,

JCF(A) = [ i 0

0 −i
]

To compute a basis for the eigenspace of i is to find a basis for

ker(A − iI) = ker[−i 1

−1 −i
]

First put the matrix in reduced row echelon form using row operations. Elementary row operations
do not change the kernel, since they are invertible and operate on the left. In this case we apply
T21(i)D1(−1)P12(A − iI) = [ 1 i

0 0 ], and conclude the kernel of A − iI of has basis {w1 = [ −i
1 ]}.

Similarly T21(−i)P12(A + iI) = [ 1 −i
0 0 ], so the kernel of A + iI has basis {w2 = [ i

1 ]}. Therefore
w = {w1, w2} is an eigenbasis, and P

−1
= [id]ew = [ −i i

1 1 ], with inverse P =
i

2
[ 1 −i
−1 −i ], and compute

JCF(A) = PAP
−1

=
i

2
[ 1 −i

−1 −i
][ 0 1

−1 0
][−i i

1 1
] = [ i 0

0 −i
] ✓
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(c) Do the same for A = [2 −1

1 4
]. We find pA(x) = x

2 − 6x + 9 = (x − 3)2. Since A ≠ 3I,

mA(x) = (x − 3)2, and by this we know A is not diagonalizable and

JCF(A) = [3 1

0 3
]

A generalized eigenbasis starts with a nonzero vector w2 such that (A−3I)2w2 = 0 but (A−3I)w2 ≠

0. Since mA(x) = (x − 3)2, any w2 satisfies the first property. Compute A − 3I = [ −1 −1
1 1 ], and I

choose w2 = e1. To complete the cycle, compute w1 = (A − 3I)w2 = [ −1
1 ]. Now w = {w1, w2} is a

generalized eigenbasis, a cycle rooted on the eigenvector w1. Therefore P
−1

= [w1 w2] = [−1 1

1 0
]

and

JCF(A) = PAP
−1

= [0 1

1 1
][2 −1

1 4
][−1 1

1 0
] = [3 1

0 3
] ✓

Example 7.5.3. Find the Jordan canonical form and basis change matrix for

A = [T ]e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 −2

1 6 1

1 0 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We compute pT (x) = (x − 5)3. Algebraic multiplicity of λ = 5 is 3. To find mT (x), compute

A − 5I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1 −2

1 1 1

1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A − 5I)2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

0 0 0

−1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Since (A − 5I)2 ≠ 0, we have mT (x) = pT (x). Thus

JCF(A) = J3(5) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 1 0

0 5 1

0 0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We know J3(5) = PAP

−1. What is P? Use the explicit computation of (A − 5I)2 to pick w3 so
that (A − 5I)2w3 ≠ 0 by inspection. Then put w2 = (A − 5I)w3, and w1 = (A − 5I)w2:

w3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
w2 = (A − 5I)w3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
w1 = (A − 5I)w2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Check that w1 is an actual eigenvector. Our generalized eigenbasis is

{w1, w2, w3} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Let P

−1
= [w1 w2 w3] = [id]ew, and watch the magic:

B = PAP
−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1

0 1 0

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 −2

1 6 1

1 0 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1

0 1 0

−1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 1 0

0 5 1

0 0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
!!
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