Real Analysis Qualifying Exam, September 18, 2022

Instructions: This exam consists of 5 questions. Each question is worth 5 points, giving a grand total of 25 points possible. Please present all of your work in a clear and concise manner and answer each question as completely as possible. Unsupported work will receive no credit, and partially completed work may receive partial credit. Good luck!

- 1. Let $f_n(x) = \frac{x}{(x+\cos(x/n))^n}$ for each $n=1,2,3,\ldots$. Prove that $f(x) = \sum_{n=1}^{\infty} f_n(x)$ is continuous on [1,2].
- 2. Let $\{x_n\}$ be a sequence of real numbers with $x_1 > 0$ and $x_{n+1} = \frac{1}{x_n + \frac{1}{x_n}}$ for all $n \ge 1$. Prove $\{x_n\}$ converges and find its limit.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable with $f'(x) \neq 1$ for all $x \in \mathbb{R}$. Show f has at most one fixed point. Note: A fixed point of a function f is a number ξ with $f(\xi) = \xi$.
- 4. Consider all positive term series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ with $\frac{x_{n+1}}{x_n} \leq \frac{y_{n+1}}{y_n}$ for all $n=1,2,3,\ldots$, that is, $\frac{x_2}{x_1} \leq \frac{y_2}{y_1}, \frac{x_3}{x_2} \leq \frac{y_3}{y_2},\ldots, \frac{x_n}{x_{n-1}} \leq \frac{y_n}{y_{n-1}}, \frac{x_{n+1}}{x_n} \leq \frac{y_{n+1}}{y_n},\ldots$ Show that if $\sum_{n=1}^{\infty} x_n$ is divergent, then so is $\sum_{n=1}^{\infty} y_n$.
- 5. (a) State a definition for a real valued function $f:[a,b]\to\mathbb{R}$ to be Riemann integrable.
- (b) Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable. Prove that |f(x)| is also Riemann integrable and

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| \, dx.$$

1