Directions

- Show all work! Write everything down. Insufficient justification can mean no credit.
- Start each problem on a new page.
- No assistance of any kind is allowed on this exam. This includes calculators and phones.

Groups

- **G1.** (5 points) Let G be a group, $H \leq G$ a subgroup that is not normal. Prove there exist cosets Ha and Hb such that $HaHb \neq Hab$.
- **G2.** (5 points) Determine with proof the automorphism group Aut(V) of the Klein 4-group $V = \{e, a, b, ab\}$. To what familiar group is it isomorphic?

Rings

- **R1.** (5 points) Suppose R is a finite ring with no nontrivial zero-divisors. Prove that R contains an element 1 satisfying $1 \cdot a = a \cdot 1 = a$ for all $a \in R$.
- **R2.** (5 points) Let $k \in K$ be fields, and let k[X] be the polynomial ring in one variable with coefficients in k. The *evaluation* at $z \in K$ is a ring homomorphism $\varepsilon : k[X] \longrightarrow K$ defined by $\varepsilon(f(X)) = f(z)$. Prove that if ε is not injective, then $\varepsilon(k[X])$ is a field.

Vector Spaces

VS 1. (5 points) Let V be a vector space with basis $\mathbf{v}_0, \ldots, \mathbf{v}_n$ and let a_0, \ldots, a_n be scalars. Define a linear transformation $T: V \longrightarrow V$ by the rules $T(\mathbf{v}_i) = \mathbf{v}_{i+1}$ if i < n, and $T(\mathbf{v}_n) = a_0 \mathbf{v}_0 + a_1 \mathbf{v}_1 + \cdots + a_n \mathbf{v}_n$. You don't have to prove this defines a linear transformation. Determine the matrix of T with respect to the basis $\mathbf{v}_0, \ldots, \mathbf{v}_n$, and determine the characteristic polynomial of T.

Cal Poly