Directions

- Show all work! Write everything down. Insufficient justification can mean no credit.
- Start each problem on a new page.
- No assistance of any kind is allowed on this exam. This includes calculators and phones.

Groups

G1. (5 points) Let G be a group, and let $\operatorname{Aut}(G)$ denote the group of automorphisms of G. There is a homomorphism $\gamma: G \longrightarrow \operatorname{Aut}(G)$ that takes $s \in G$ to the automorphism γ_{s} defined by $\gamma_{s}(t)=s t s^{-1}$.
(a) Prove rigorously, possibly with induction, that if $\gamma_{s}(t)=t^{b}$, then $\gamma_{s^{n}}(t)=t^{b^{n}}$.
(b) Suppose $s \in G$ has order 5 , and $s t s^{-1}=t^{2}$. Find the order of t. Justify your answer.

G2. (5 points) Suppose G is a nonempty finite set that has an associative pairing $G \times G \longrightarrow G$, written $(x, y) \mapsto x \cdot y$. Suppose this pairing satisfies left and right cancellation: $x \cdot y=x \cdot y^{\prime}$ implies $y=y^{\prime}$, and $x \cdot y=x^{\prime} \cdot y$ implies $x=x^{\prime}$. Prove there exists an element e of G such that for all $x \in G, e \cdot x=x \cdot e=x$. Justify your reasoning as carefully as possible.

Rings

R1. (5 points) Let R_{1}, \ldots, R_{k} be commutative rings, and set $R=R_{1} \times \cdots \times R_{k}$.
(a) Let $I_{j} \subset R_{j}$ be ideals, and put $I=I_{1} \times \cdots \times I_{k}$. Use the first isomorphism theorem to prove that $R / I \simeq R_{1} / I_{1} \times \cdots \times R_{k} / I_{k}$.
(b) Prove the prime ideals of R have the form $R_{1} \times \cdots \times R_{j-1} \times P_{j} \times R_{j+1} \times \cdots \times R_{k}$ where $P_{j} \subset R_{j}$ is a prime ideal for $1 \leq j \leq k$. (Omit the proof that this is an ideal.)

R2. (5 points) Let i be the imaginary number, let $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$, a principal ideal domain, and let \mathbb{Z}_{2} be the finite ring of integers $(\bmod 2)$.
(a) Define a ring homomorphism from $\mathbb{Z}[i]$ to \mathbb{Z}_{2}. You must prove it is a ring homomorphism.
(b) Find, with proof, a generator for the kernel of your ring homomorphism.

Vector Spaces

VS 1. (5 points) Suppose $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a linear transformation with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$, and let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ be corresponding eigenvectors. Prove $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ are linearly independent.

