ALGEBRA QUALIFYING EXAM March 12, 2016

Do all five problems.

- 1. Without using Cauchy's Theorem or the Sylow theorems, prove that every group of order 21 contains an element of order 3.
- 2. Suppose G is a group that contains normal subgroups $H, K \subseteq G$ with $H \cap K = \{e\}$ and HK = G. Prove that $G \cong H \times K$.
- 3. Let R be a commutative ring.
 - (a) Prove that the set N of all nilpotent elements of R is an ideal.
 - (b) Prove that R/N is a ring with no nonzero nilpotent elements.
 - (c) Show that N is contained in every prime ideal of R.
- 4. Let $z \in \mathbb{C}$ be a complex number and let $\epsilon_z : \mathbb{R}[x] \to \mathbb{C}$ be the evaluation homomorphism given by $\epsilon_z(p(x)) = p(z)$ for each $p(x) \in \mathbb{R}[x]$.
 - (a) Show that $\ker(\epsilon_z)$ is a prime ideal.
 - (b) Compute $\ker(\epsilon_{1+i})$, $\operatorname{im}(\epsilon_{1+i})$ and then state the conclusion of the First Isomorphism Theorem applied to the homomorphism ϵ_{1+i} .
- 5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation that expands radially by a factor of 3 around the line parameterized by $L(t) = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} t$, leaving the line itself fixed (viewed as a subspace).
 - (a) Find an eigenbasis for T and provide the matrix representation of T with respect to that basis.
 - (b) Provide the matrix representation of T with respect to the standard basis.