Real Analysis Qualifying Exam, June 7, 2020

Instructions: This exam consists of 5 questions. Each question is worth 5 points, giving a grand total of 25 points possible. Please present all of your work in a clear and concise manner and answer each question as completely as possible. Unsupported work will receive no credit and partially completed work may receive partial credit. Good luck!

- **1.** Let (f_n) be a sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$ and let $f : \mathbb{R} \to \mathbb{R}$ be a function. Suppose f_n is bounded for each $n \in \mathbb{N}$.
- (a) Prove that if $f_n \to f$ uniformly on \mathbb{R} , then f is bounded.
- (a) If each f_n is continuous and $f_n \to f$ pointwise on \mathbb{R} , does f have to be bounded? Give a proof or a counter example.
- 2. Show that the function

$$f(x) = \begin{cases} x^2, & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

is differentiable only at x = 0.

3. Consider the sequence of functions

$$f_k(x) = \frac{x^k \left(\sin(kx^2 + 1) + \cos(\pi - 5x)\right)}{k!}.$$

Prove that the series $\sum_{k=0}^{\infty} f_k$ converges uniformly on any interval of the form [-M, M] in \mathbb{R} .

- **4.** A function $f: \mathbb{R} \to \mathbb{R}$ is *Lipschitz* on a set $A \subseteq \mathbb{R}$ if there exists a constant $M \geq 0$ such that $|f(x) f(y)| \leq M|x y|$ for all $x, y \in A$.
- (a) Assume that f is a differentiable function on \mathbb{R} and that f' is continuous on [a, b]. Prove that f is Lipschitz on [a, b].
- (b) Prove that a Lipschitz function $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous on \mathbb{R} .
- **5.** (a) State the definition for $f:[a,b]\to\mathbb{R}$ to be Riemann integrable on [a,b].
- (b) Define $f:[0,4]\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1, & x \in [0, 1) \\ 2, & x \in [1, 2) \\ 3, & x \in [2, 3) \\ 4, & x \in [3, 4] \end{cases}.$$

Use the definition of the Riemann integral to prove that f is Riemann integrable on [0, 4].

Note: If you choose to work with a definition of Riemann integrability different than that stated in part (a), please provide the alternate definition.