Real Analysis Qualifying Exam, June 4, 2016

Instructions: This exam consists of 5 questions. Each question is worth 5 points, giving a grand total of 25 points possible. Please present all of your work in a clear and concise manner and answer each question as completely as possible. Unsupported work will receive no credit and partially completed work may receive partial credit. Good luck!

- 1. (a) Argue from the definition of Cauchy sequence that if $\{a_n\}$ and $\{b_n\}$ are Cauchy sequences, then so is $\{a_nb_n\}$.
- (b) Give an example of a sequence $\{a_n\}$ with $\lim |a_{n+1} a_n| = 0$ but which is *not* Cauchy.
- **2.** Let f be a function that is continuous on [0,1] and differentiable on (0,1). Show that if f(0)=0 and $|f'(x)| \leq |f(x)|$ for all $x \in (0,1)$, then f(x)=0 for all $x \in [0,1]$.
- **3.** Let $f_n : \mathbb{R} \to \mathbb{R}$ be a sequence of continuous functions that converges uniformly on \mathbb{R} to a function f. Let $\{x_n\}$ be a sequence of real numbers that converges to $x_o \in \mathbb{R}$. Prove that $\{f_n(x_n)\} \to f(x_o)$.
- **4.** Let $P = \{2, 3, 5, 7, 11, 13, \dots\}$ be the set of prime numbers.
- (a) Find the radius of convergence R of the power series

$$f(x) = \sum_{p \in P} x^p = x^2 + x^3 + x^5 + x^7 + \dots$$

- (b) Show that $0 \le f(x) \le \frac{x^2}{1-x}$ for $0 \le x < R$.
- **5.** (a) State the definition for a real valued function $f:[a,b]\to\mathbb{R}$ to be Riemann integrable on the interval [a,b].
- (b) Let $f:[a,b]\to\mathbb{R}$ be increasing on the inverval [a,b]. Use the definition to prove that f is Riemann integrable on [a,b].

Note: If you choose to work with a definition of Riemann integrability different than that stated in part (a), please provide the alternate definition.