1. Let G be a group and $a \in G$ be an element. Let $n \in \mathbb{N}$ be the smallest positive number such that $a^n = e$, where e is the identity element. Show that the set

$$\{e, a, a^2, \dots, a^{n-1}\}$$

contains no repetitions.

- 2. Let *G* be a finite group and $H, K \subseteq G$ be normal subgroups of relatively prime order. Prove that *G* is isomorphic to a subgroup of $G/H \times G/K$.
- 3. Prove that if $\phi: R \to S$ is a surjective ring homomorphism between commutative rings with unity, then $\phi(1_R) = 1_S$.
- 4. Let $V \subset \mathbf{R}^5$ be the subspace defined by the equation

$$x_1 - 2x_2 + 3x_3 - 4x_4 + 5x_5 = 0.$$

- a) Find (with justification) a basis for V.
- b) Find (with justification) a basis for V^{\perp} , the subspace of \mathbb{R}^5 orthogonal to V under the usual dot product.
- 5. Suppose V is a finite-dimensional real vector space and $T:V\to V$ is a linear transformation. Prove that T has at most $\dim(\operatorname{range} T)$ distinct nonzero eigenvalues.