Algebra Qualifying Exam

September 12, 2020

1. Let
$$A = \begin{bmatrix} 6 & -2 & -1 \\ 10 & -3 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$
.

- a) Find bases for the eigenspaces of A.
- b) Determine if A is diagonalizable. If so, give an invertible matrix P and diagonal matrix D such that $P^{-1}AP = D$. If not, explain why not.
- 2. Let *G* be the additive group \mathbb{Z}_{2020} and let $H \subseteq G$ be the subset consisting of those elements with order dividing 20.
 - a) Prove *H* is a subgroup of *G*.
 - b) Find an explicit generator for H and determine its order.
- 3. Let G be a finite group and Z(G) denote its center.
 - a) Prove that if G/Z(G) is cyclic, then G is abelian.
 - b) Prove that if G is nonabelian, then $|Z(G)| \leq \frac{1}{4}|G|$.
- 4. Let R be a commutative ring with 1. We say an element $n \in R$ is **nilpotent** if there exists a number $k \in \mathbb{N}$ such that $n^k = 0$.
 - a) Show that if *n* is nilpotent, then 1 n is a unit.
 - b) Give an example of a commutative ring with 1 that has no nonzero nilpotent elements, but is not an integral domain.
- 5. Let *R* be a ring with 1 and suppose $e \in R$ is **idempotent**, i.e., satisfies $e^2 = e$.
 - a) Prove that 1 e is also idempotent.
 - b) Suppose $e \neq 0, 1$. Show that Re and R(1-e) are proper left ideals of R.
 - c) Prove there is an isomorphism $R \cong Re \times R(1 e)$.