- 1. Let P_3 be the real vector space of all real polynomials of degree three or less. Define $L: P_3 \to P_3$ by L(p(x)) = p(x) + p(-x).
 - a) Prove L is a linear transformation.
 - b) Find a basis for the null space of L.
 - c) Compute the dimension of the image of L.
- 2. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation that rotates counterclockwise around the z-axis by $\frac{2\pi}{3}$.
 - a) Write the matrix for T with respect to the standard basis $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$.
 - b) Write the matrix for T with respect to the basis $\left\{ \begin{bmatrix} \frac{\sqrt{3}}{2} \\ -\frac{1}{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.
 - c) Determine all (complex) eigenvalues of T.
 - d) Is T diagonalizable over \mathbb{C} ? Justify your answer.
- 3. Suppose G is a cyclic group of order n, and $t \in G$ is a generator.
 - a) Give a positive integer d such that $t^{-1} = t^d$.
 - b) Let c be an integer and let $m = \gcd(n, c)$. Prove that the order of t^c is $\frac{n}{m}$.
- 4. Suppose G is a group, H and K are normal subgroups of G, and $H \leq K$.
 - a) Define a group homomorphism from K to G/H.
 - b) Compute the kernel of the homomorphism in (a), and apply the First Isomorphism Theorem.
- 5. Let $I \subseteq \mathbf{Z}[x]$ denote the set of all polynomials with even constant term.
 - a) Prove that *I* is an ideal.
 - b) Prove that *I* is not a *principal* ideal.