Algebra Qualifying Exam

September 15, 2018

1. Let
$$T: \mathbf{R}^3 \to \mathbf{R}^3$$
 be the linear transformation defined by $T \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x+y \\ 2z-x \\ y+2z \end{bmatrix}$.

- a) Find the matrix that represents T with respect to the standard basis for \mathbb{R}^3 .
- b) Find a basis for the kernel of T.
- c) Determine the rank of T.
- 2. Suppose G is a group, $H \leq G$ a subgroup, and $a, b \in G$. Prove that the following are equivalent:
 - a) aH = bH
 - b) $b \in aH$
 - c) $b^{-1}a \in H$
- 3. Let G be a group and $H, K \subseteq G$ be normal subgroups with $H \cap K = \{e\}$. Show that each element in H commutes with every element in K.
- 4. Let *R* be a commutative ring with unity.
 - a) Define what it means for an element in *R* to be **prime**, and also what it means for an element to be **irreducible**.
 - b) Prove that if R is an integral domain, then every prime element is irreducible.
- 5. Suppose A is a real $n \times n$ matrix that satisfies $A^2 \mathbf{v} = 2A \mathbf{v}$ for every $\mathbf{v} \in \mathbf{R}^n$.
 - a) Show that the only possible eigenvalues of A are 0 and 2.
 - b) For each $\lambda \in \mathbf{R}$, let E_{λ} denote the λ -eigenspace of A, i.e., $E_{\lambda} = \{\mathbf{v} \in \mathbf{R}^n \mid A\mathbf{v} = \lambda\mathbf{v}\}$. Prove that $\mathbf{R}^n = E_0 \oplus E_2$. (*Hint:* For every vector \mathbf{v} one can write $\mathbf{v} = (\mathbf{v} - \frac{1}{2}A\mathbf{v}) + \frac{1}{2}A\mathbf{v}$.)