Mathematics 520, 521 Applied Analysis I, II

1. Catalog Description
 Math 520, 521 Applied Analysis I, II (4) (4)

 Advanced mathematical methods of analysis in science and engineering, integrated with modeling of
 physical phenomena. Topics include applications of complex analysis, Fourier analysis, ordinary and
 partial differential equations. Additional topics to be drawn from perturbation methods, asymptotic
 analysis, dynamical systems, numerical methods, optimization, and the calculus of variations. 4 lectures.
 MATH 520 prerequisite: MATH 408, MATH 412 and graduate standing, or consent of the instructor.
 MATH 521 prerequisite: MATH 520.

2. Required Background or Experience
 Math 408, Math 412 and graduate standing. Math 418 recommended.

3. Learning Objectives
 The student should:
 a) Be able to model the behavior of physical systems using differential equations and the methods of
 applied mathematics, especially those of Fourier and complex analysis.
 b) Understand the asymptotic behavior of time dependent and independent systems, with particular
 attention to stability.

4. Text and References
 Text to be specified by instructor.

5. Minimum Student Materials
 Paper, pencils and notebook.

6. Minimum University Facilities
 Classroom with ample chalkboard space for class use.

7. Content and Method
 A. Required Topics:
 1. Complex analysis
 2. Fourier analysis
 3. Ordinary differential equations
 4. Partial differential equations
 5. Applications of the above topics

 B. Additional Topics to be Chosen From:
 1. Dynamical systems
 2. Perturbation methods
 3. Calculus of variations
 4. Theory of integral equations
 5. Discrete time systems
 6. Numerical analysis

8. Methods of Assessment
 Homework and examinations.