Math 443 Modern Geometries

1. Catalog Description

MATH 443. Modern Geometries

4 units

Prerequisite: MATH 442.

Non-Euclidean and projective geometries. Properties of parallels, biangles, Saccheri and Lambert quadrilaterals, angle-sum and area. Limiting curves: hyperbolic trigonometry, duality, perspectivity, quadrangles, fundamental theorems of projective geometry, conics. 4 lectures.

2. Required Background or Experience

Math 442 or equivalent.

3. Learning Objectives

The student should develop:

- a. Additional understanding of neutral and Euclidean geometry.
- b. An appreciation of Euclidean geometry as one of several possible geometries.
- c. A basic knowledge of the non-Euclidean geometries that include hyperbolic geometry, spherical geometry, and projective geometry.
- d. A basic knowledge of analytical and transformational geometry.

4. Text and References

- Greenberg, Marvin J., Euclidean and Non-Euclidean Geometries
- Reynolds, B., and W. Fenton, College Geometry Using the Geometer's Sketchpad
- Wallace, Edward C., and Stephen F. West, Roads to Geometry
- <u>California Common Core State Standards Mathematics</u> Retrieve from http://www.cde.ca.gov/ci/cc/
- <u>Standards for Mathematical Practice</u> Retrieve from http://www.corestandards.org/the-standards/mathematics/introduction/standards-for-mathematical-practice/

5. Minimum Student Materials

Paper, pencils, notebook, compass, straightedge, and geometry dynamic software.

6. Minimum University Facilities

Classroom or lab with ample chalkboard space, overhead projector, and computers.

7. <u>Content and Method</u>

<u>Topic</u>		<u>Lectures</u>
 a. Properties of hyperbolic geometry b. Properties of spherical geometry c. Properties of projective geometry d. Properties of transformational geometry Method	Total	12 2 12 <u>12</u> 38

Lecture and discussion, student-presented solutions of problems and demonstrations of theorems, and dynamic geometry software activities.

8. Methods of Assessment

Homework, quizzes, constructions, activities, oral presentations, and exams.