MATH 418 Partial Differential Equations

1. <u>Catalog Description</u>

MATH 418 Partial Differential Equations

4 units

Prerequisite: MATH 344. Recommended: MATH 304.

Mathematical formulation of physical laws. Separation of variables. Orthogonal functions and generalized Fourier series. Bessel functions, Legendre polynomials. Sturm-Liouville problem. Boundary value problems; nonhomogeneous techniques. Applications to heat flow, potential theory, vibrating strings and membranes. 4 lectures.

2. Required Background or Experience

Math 344 or consent of instructor

3. <u>Learning Objectives</u>

Students should:

- a. Gain insight into and appreciation for the application of advanced mathematics to problems in physics and engineering.
- b. Be guided through derivation of appropriate partial differential equations governing the behavior of several standard physical problems.
- c. Use methods of solving three different types of second order partial differential equations with constant coefficients and various boundary conditions.
- d. Work with Fourier series expansions through employment of separation of variables method.
- e. Solve ordinary differential equations with variable coefficients through use of power series.
- f. Become familiar with some properties of the most common special functions in physics and engineering.

4. <u>Text and References</u>

The instructor may choose a text or choose a text with similar content coverage and level. Suggested texts include:

- Churchill, R. V. and J. W. Brown, <u>Fourier Series and Boundary Value Problems</u>
- Constanda, Christian, Solution Techniques for Elementay Partial Differential Equations
- Haberman, Richard, <u>Elementary Applied Partial Differential Equations with Fourier Series</u> and Boundary Value <u>Problems</u>
- Logan, J. David, Applied Partial Differential Equations
- Powers, David L., Boundary Value Problems
- Articolo, George A., Partial Differential Equations & Boundary Value Problems with Maple V
- Bassanini, Piero and Alan R. Elcrat, <u>Theory and Applications of Partial Differential</u> Equations
- Colton, David, Partial Differential Equations, An Introduction
- Farlow, S. J., Partial Differential Equations for Scientists and Engineers
- Humi, Mayer, and William B. Miller, Boundary Value Problems and Partial Differential

Equations

- Pinsky, Mark A., <u>Partial Differential Equations and Boundary Value Problems with</u> Applications
- Snider, Arthur D., <u>Partial Differential Equations</u>: Sources and Solutions
- Strauss, Walter A., Partial Differential Equations: An Introduction

5. Minimum Student Materials

Paper, pencils and notebook.

6. <u>Minimum University Facilities</u>

Classroom with ample chalkboard space for class use.

7. Content and Method

- a. Introduction to partial differential equations
- b. Mathematical modeling and derivation of partial differential equations for physical problems
- c. The heat equation, the wave equation, and Laplace's equation
- d. Separation of variables
- e. Review of Fourier series
- f. Use of Fourier series in solutions of partial differential equations
- g. Boundary value problems and Sturm-Liouville problems
- h. Nonhomogenous problems and eigenfunction expansions
- i. Green's functions

Method

Lecture-discussion including chalkboard development, application problems, supervised work, and individual conferences.

8. Methods of Assessment

Comprehensive final exam, mid-term exams or quizzes, homework.