MATH 336 Combinatorial Mathematics

1. Catalog Description

 MATH 336 Combinatorial Mathematics (4)

 Methods of enumerative combinatorics: sum, product, and division rules, bijective and recursive
 techniques, inclusion and exclusion, generating functions, and the finite difference calculus.
 Advanced topics to be selected from the theory of partitions, Polya theory, designs, and codes.
 4 lectures. Prerequisite: MATH 248 or Junior standing.

2. Required Background or Experience

 Math 248 or Junior standing.

3. Learning Objectives

 The student should gain an understanding of the fundamental concepts of combinatorics.

4. Text and References

 Possible texts:

 Bóna, Miklós, A Walk Through Combinatorics
 Grimaldi, Ralph P., Discrete and Combinatorial Mathematics
 Marcus, Daniel A., Combinatorics: A Problem-Oriented Approach
 Tucker, Alan, Applied Combinatorics

 References:

 Andrews, George E., The Theory of Partitions
 Cameron, Peter J., Combinatorics: Topics, Techniques, Algorithms
 Erickson, Martin J., Introduction to Combinatorics

5. Minimum Student Materials

 Paper, pencils, and notebook.

6. Minimum University Facilities

 Classroom with ample chalkboard space for class use.
7. **Content and Method**

Topic

a. Elementary methods of enumeration - sum, product, and division rules applied to counting permutations, combinations, etc

b. The principle of inclusion and exclusion

c. Recursions

d. Classical sequences and counting problems (lattice paths, partitions, Stirling and Catalan numbers, etc.)

e. Counting by bijections or involutions

f. Generating functions, binomial and multinomial theorems, formal manipulation of series

g. Advanced topics selected by instructor (time permitting)

8. **Methods of Assessment**

Homework assignments, class demonstrations, quizzes, and examinations.

Homework exercises should be engineered to guide learning outside of the classroom (this may include writing small computer programs, reading combinatorics literature, or applying combinatorics to other disciplines).