MATH 143 Calculus III

1. Catalog Description

MATH 143 Calculus III
 GE Area B1

Prerequisite: MATH 142 with a grade of C- or better or consent of instructor.
Infinite sequences and series, vector algebra, curves. 4 lectures. Crosslisted as HNRS/MATH 143. Fulfills GE Area B4 (GE Area B1 for students on the 2019-20 or earlier catalogs); a grade of C - or better is required in one course in this GE Area.
2. Required Background or Experience

Math 142.

3. Learning Objectives

The student should:
a. Understand parametric equations and polar coordinates, and their applications.
b. Understand vector algebra and elementary differential vector calculus.
c. Be able to test infinite series for convergence.
d. Be able to calculate power series and Taylor series.

4. Text and References

- Stewart, Calculus, $8^{\text {th }}$ edition, Cengage

5. Minimum Student Materials

Paper, pencils and notebook.
6. Minimum University Facilities

Classroom with ample chalkboard space for class use.

7. Content and Method

Content

No. of Lectures

CHAPTER 10 - Parametric Equations and Polar Coordinates
10.1 Curves Defined by Parametric Equations
10.2 Calculus with Parametric Curves
10.3 Polar Coordinates
10.4 Areas and Lengths in Polar Coordinates

CHAPTER 11- Infinite Sequences and Series
13
The goal of the chapter is to develop Taylor Series.
11.1 Sequences
11.2 Series
11.3 The Integral Test and Estimates of Sums
11.4 The Comparison Tests
11.5 Alternating Series
11.6 Absolute Convergence and the Ratio and Root Tests
11.7 Strategy for Testing Series
11.8 Power Series
11.9 Representations of Functions as Power Series
11.10 Taylor and Maclaurin Series
11.11 Applications of Taylor Polynomials

CHAPTER 12 - Vectors and the Geometry of Space
12.1 Three-Dimensional Coordinate Systems
12.2 Vectors
12.3 The Dot Product
12.4 The Cross Product
12.5 Equations of Lines and Planes

CHAPTER 13 - Vector Functions
13.1 Vector Functions and Space Curves
13.2 Derivatives and Integrals of Vector Functions
13.3 Arc Length and Curvature
13.4 Motion in Space: Velocity and Acceleration

8. Methods of Assessment

The primary methods of assessment are: essay examinations, quizzes and homework. Typically, there will be one or more hour-long examinations during the quarter, and a required comprehensive final examination.

