
Stellar nucleosynthesis
Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar
nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive
theory, it yields accurate estimates of the observed abundances of the elements. It explains why the observed abundances of
elements change over time and why some elements and their isotopes are much more abundant than others. The theory was
initially proposed by Fred Hoyle in 1946,[1] who later refined it in 1954.[2] Further advances were made, especially to
nucleosynthesis by neutron capture of the elements heavier than iron, by Margaret Burbidge, Geoffrey Burbidge, William Alfred
Fowler and Hoyle in their famous 1957 B2FH paper,[3] which became one of the most heavily cited papers in astrophysics
history.

Stars evolve because of changes in their composition (the abundance of their constituent elements) over their lifespans, first by
burning hydrogen (main sequence star), then helium (red giant star), and progressively burning higher elements. However, this
does not by itself significantly alter the abundances of elements in the universe as the elements are contained within the star. Later
in its life, a low-mass star will slowly eject its atmosphere via stellar wind, forming a planetary nebula, while a higher–mass star
will eject mass via a sudden catastrophic event called a supernova. The term supernova nucleosynthesis is used to describe the
creation of elements during the explosion of a massive star or white dwarf.

The advanced sequence of burning fuels is driven by gravitational collapse and its associated heating, resulting in the subsequent
burning of carbon, oxygen and silicon. However, most of the nucleosynthesis in the mass range A = 28–56 (from silicon to nickel)
is actually caused by the upper layers of the star collapsing onto the core, creating a compressional shock wave rebounding
outward. The shock front briefly raises temperatures by roughly 50%, thereby causing furious burning for about a second. This
final burning in massive stars, called explosive nucleosynthesis or supernova nucleosynthesis, is the final epoch of stellar
nucleosynthesis.

A stimulus to the development of the theory of nucleosynthesis was the discovery of variations in the abundances of elements
found in the universe. The need for a physical description was already inspired by the relative abundances of isotopes of the
chemical elements in the solar system. Those abundances, when plotted on a graph as a function of atomic number of the
element, have a jagged sawtooth shape that varies by factors of tens of millions (see history of nucleosynthesis theory).[4] This
suggested a natural process that is not random. A second stimulus to understanding the processes of stellar nucleosynthesis
occurred during the 20th century, when it was realized that the energy released from nuclear fusion reactions accounted for the
longevity of the Sun as a source of heat and light.[5]
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In 1920, Arthur Eddington, on the basis of the precise measurements of
atomic masses by F.W. Aston and a preliminary suggestion by Jean Perrin,
proposed that stars obtained their energy from nuclear fusion of hydrogen
to form helium and raised the possibility that the heavier elements are
produced in stars.[6][7][8] This was a preliminary step toward the idea of
stellar nucleosynthesis. In 1928, George Gamow derived what is now
called the Gamow factor, a quantum-mechanical formula that gave the
probability of bringing two nuclei sufficiently close for the strong nuclear
force to overcome the Coulomb barrier. The Gamow factor was used in the
decade that followed by Atkinson and Houtermans and later by Gamow
himself and Edward Teller to derive the rate at which nuclear reactions
would occur at the high temperatures believed to exist in stellar interiors.

In 1939, in a paper entitled "Energy Production in Stars", Hans Bethe
analyzed the different possibilities for reactions by which hydrogen is
fused into helium.[9] He defined two processes that he believed to be the
sources of energy in stars. The first one, the proton–proton chain reaction,
is the dominant energy source in stars with masses up to about the mass of
the Sun. The second process, the carbon–nitrogen–oxygen cycle, which
was also considered by Carl Friedrich von Weizsäcker in 1938, is more
important in more massive main-sequence stars.[10] These works
concerned the energy generation capable of keeping stars hot. A clear
physical description of the proton–proton chain and of the CNO cycle
appears in a 1968 textbook.[5] Bethe's two papers did not address the creation of heavier nuclei, however. That theory was begun
by Fred Hoyle in 1946 with his argument that a collection of very hot nuclei would assemble thermodynamically into iron[1]

Hoyle followed that in 1954 with a paper describing how advanced fusion stages within massive stars would synthesize the
elements from carbon to iron in mass.[2][11]

Hoyle's theory was expanded to other processes, beginning with the publication of a review paper in 1957 by Burbidge, Burbidge,
Fowler and Hoyle (commonly referred to as the B2FH paper).[3] This review paper collected and refined earlier research into a
heavily cited picture that gave promise of accounting for the observed relative abundances of the elements; but it did not itself
enlarge Hoyle's 1954 picture for the origin of primary nuclei as much as many assumed, except in the understanding of
nucleosynthesis of those elements heavier than iron by neutron capture. Significant improvements were made by Alastair G. W.
Cameron and by Donald D. Clayton. Cameron presented his own independent approach[12] (following Hoyle's approach for the
most part) of nucleosynthesis. He introduced computers into time-dependent calculations of evolution of nuclear systems.
Clayton calculated the first time-dependent models of the S-process[13] and of the R-process,[14] as well as of the burning of
silicon into the abundant alpha-particle nuclei and iron-group elements,[15][16] and discovered radiogenic chronologies[17] for
determining the age of the elements. The entire research field expanded rapidly in the 1970s.

The most important reactions in stellar nucleosynthesis:

Hydrogen fusion:

Deuterium fusion
The proton–proton chain
The carbon–nitrogen–oxygen cycle
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Helium fusion:

The triple-alpha process
The alpha process

Fusion of heavier elements:

Lithium burning: a process found most commonly in brown
dwarfs
Carbon-burning process
Neon-burning process
Oxygen-burning process
Silicon-burning process

Production of elements heavier than iron:

Neutron capture:

The R-
process
The S-
process

Proton capture:

The Rp-
process
The P-
process

Photodisintegration

Hydrogen fusion (nuclear fusion of four protons to form a helium-4 nucleus[18]) is the dominant process that generates energy in
the cores of main-sequence stars. It is also called "hydrogen burning", which should not be confused with the chemical
combustion of hydrogen in an oxidizing atmosphere. There are two predominant processes by which stellar hydrogen fusion
occurs: proton-proton chain and the carbon-nitrogen-oxygen (CNO) cycle. Ninety percent of all stars, with the exception of white
dwarfs, are fusing hydrogen by these two processes.

In the cores of lower-mass main-sequence stars such as the Sun, the dominant energy production process is the proton–proton
chain reaction. This creates a helium-4 nucleus through a sequence of chain reactions that begin with the fusion of two protons to
form a deuterium nucleus (one proton plus one neutron) along with an ejected positron and neutrino.[19] In each complete fusion
cycle, the proton–proton chain reaction releases about 26.2 MeV.[19] The proton–proton chain reaction cycle is relatively
insensitive to temperature; a 10% rise of temperature would increase energy production by this method by 46%, hence, this
hydrogen fusion process can occur in up to a third of the star's radius and occupy half the star's mass. For stars above 35% of the
Sun's mass,[20] the energy flux toward the surface is sufficiently low and energy transfer from the core region remains by
radiative heat transfer, rather than by convective heat transfer.[21] As a result, there is little mixing of fresh hydrogen into the core
or fusion products outward.

Cross section of a supergiant
showing nucleosynthesis and
elements formed.

A version of the periodic table indicating the origins – including stellar nucleosynthesis
– of the elements. Elements above 94 are manmade and are not included.
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In higher-mass stars, the dominant energy production process is
the CNO cycle, which is a catalytic cycle that uses nuclei of
carbon, nitrogen and oxygen as intermediaries and in the end
produces a helium nucleus as with the proton-proton chain.[19]

During a complete CNO cycle, 25.0 MeV of energy is released.
The difference in energy production of this cycle, compared to
the proton–proton chain reaction, is accounted for by the energy
lost through neutrino emission.[19] The CNO cycle is very
temperature sensitive, a 10% rise of temperature would produce
a 350% rise in energy production. About 90% of the CNO cycle
energy generation occurs within the inner 15% of the star's mass,
hence it is strongly concentrated at the core.[22] This results in
such an intense outward energy flux that convective energy
transfer become more important than does radiative transfer. As
a result, the core region becomes a convection zone, which stirs
the hydrogen fusion region and keeps it well mixed with the
surrounding proton-rich region.[23] This core convection occurs
in stars where the CNO cycle contributes more than 20% of the
total energy. As the star ages and the core temperature increases,
the region occupied by the convection zone slowly shrinks from
20% of the mass down to the inner 8% of the mass.[22] Our Sun
produces 10% of its energy from the CNO cycle.

The type of hydrogen fusion process that dominates in a star is
determined by the temperature dependency differences between
the two reactions. The proton–proton chain reaction starts at
temperatures about 4 × 106 K,[24] making it the dominant fusion
mechanism in smaller stars. A self-maintaining CNO chain
requires a higher temperature of approximately 16 × 106 K, but
thereafter it increases more rapidly in efficiency as the
temperature rises, than does the proton-proton reaction.[25]

Above approximately 17 × 106 K, the CNO cycle becomes the
dominant source of energy. This temperature is achieved in the
cores of main sequence stars with at least 1.3 times the mass of
the Sun.[26] The Sun itself has a core temperature of about
15.7 × 106 K. As a main sequence star ages, the core temperature
will rise, resulting in a steadily increasing contribution from its
CNO cycle.[22]

Main sequence stars accumulate helium in their cores as a result
of hydrogen fusion, but the core does not become hot enough to
initiate helium fusion. Helium fusion first begins when a star
leaves the red giant branch after accumulating sufficient helium
in its core to ignite it. In stars around the mass of the sun, this
begins at the tip of the red giant branch with a helium flash from
a degenerate helium core and the star moves to the horizontal

Proton–proton chain reaction

Helium fusion
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branch where it burns helium in its core. More massive stars
ignite helium in their cores without a flash and execute a blue
loop before reaching the asymptotic giant branch. Despite the
name, stars on a blue loop from the red giant branch are typically
not blue in color, but are rather yellow giants, possibly Cepheid
variables. They fuse helium until the core is largely carbon and
oxygen. The most massive stars become supergiants when they
leave the main sequence and quickly start helium fusion as they become red supergiants. After helium is exhausted in the core of
a star, it will continue in a shell around the carbon-oxygen core.[18][21]

In all cases, helium is fused to carbon via the triple-alpha process. This can then form oxygen, neon, and heavier elements via the
alpha process. In this way, the alpha process preferentially produces elements with even numbers of protons by the capture of
helium nuclei. Elements with odd numbers of protons are formed by other fusion pathways.

The reaction rate per volume between species A and B, having number densities nA,B is given by:

where σ(v) is the cross section at relative velocity v, and averaging is performed over all velocities.

Semi-classically, the cross section is proportional to , where  is the de Broglie wavelength. Thus semi-classically

the cross section is proportional to .

However, since the reaction involves quantum tunneling, there is an exponential damping at low energies that depends on Gamow
factor EG, giving:

where S(E) depends on the details of the nuclear interaction.

One then integrates over all energies to get the total reaction rate, using the Maxwell–Boltzmann distribution and the relation :

where  is the reduced mass.

Since this integration has an exponential damping at high energies of the form  and at low energies from the Gamow
factor, the integral almost vanished everywhere except around the peak, called Gamow peak, at E0, where:

Thus:

Reaction rate
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The exponent can then be approximated around E0 as:

And the reaction rate is approximated as:[27]

Values of S(E0) are typically 10−3-103 in units of keV*b, but are damped by a huge factor when involving a beta decay, due to the
relation between the intermediate bound state (e.g. diproton) half-life and the beta decay half-life, as in the proton–proton chain
reaction. Note that typical core temperatures in main-sequence stars give kT of the order of keV.

Thus, the limiting reaction in the CNO cycle, proton capture by 14 
7N , has S(E0) ~ S(0) = 3.5 keV b, while the limiting reaction in

the proton-proton chain reaction, the creation of deuterium from two protons, has a much lower S(E0) ~ S(0) = 4*10−22 keV
b.[28][29] Incidentally, since the former reaction has a much higher Gamow factor, and due to the relative abundance of elements
in typical stars, the two reaction rates are equal at a temperature value that is within the core temperature ranges of main-sequence
stars.
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