Dr. Xiao-Hua (Helen) Yu

- Professor, Dept. of Electrical Engineering
- Research Interest
 - Computational Intelligence and Its Applications
 - Digital Signal Processing
 - Adaptive control
- Graduate courses taught at Cal Poly
 - EE 509: Computational Intelligence
 - EE 515: Discrete-time Filters
 - EE 513: Modern Control Theory
 - EE 514: Advanced Topics in Control Systems
 - EE 528: Digital Image Processing

Computational Intelligence

- Areas of study
 - Artificial neural networks
 - Evolutionary computation
 - Swarm intelligence
 - Immuno-computation

- Applications
 - System identification
 - Adaptive control
 - Signal processing
 - Optimization
 - And many more...

Computational Intelligence Applications

Current Projects

- Biomed signal/image processing, medical diagnosis, and biometrics identification with deep learning and various intelligent paradigms
 - ECG and EEG signals
 - Medical image registration
 - Alzheimer's disease detection
- Smart power grid
 - Electricity price prediction
 - Fault detection and classification
- Control system applications
 - Robot path planning
 - Decentralized multi-robot formation control
 - Reinforcement learning for controller design
- Other AI related applications...

Motor Imagery Classification

- Electroencephalography (EEG) is commonly used to study brain cortical electrophysiology
 - It is reported that approximately 20 million people in the United States suffer from irreversible nerve damage
 - Neuroprosthetic devices with Brain Computer Interface (BCI) have become a viable solution for paralysis patients in recent years
 - With EEG signal analysis, these systems can interpret (translate) human brain activities into commands to control artificial limbs or robot arms for patients

• Various approaches based on computational intelligence will be studied

Image Registration

- In clinic studies, multiple images for a patient are usually acquired at different time to allow doctors to monitor the effects of treatment over time
- However, it is usually difficult to have the region of interest (e.g. a tumor) positioned in exactly the same spot or orientation for multiple images
- Image registration transforms different sets of data into one coordinate system in order to align up and overlay multiple images
- Our approach considers both image and frequency domain features

Alzheimer's Disease Detection

- Alzheimer's disease is a chronic neurodegenerative disease that results in progressive cognitive decline and eventually leads to dementia
 - It is the 6th leading cause of death in US. Early detection is crucial for symptom management and treatment
- Brain scan images (CT, MRI, PET, etc.) are often used to detect Alzheimer's disease
 - Electroencephalogram (EEG) can also be used to detect abnormal brain-wave activity
- Artificial neural networks (ANN) and deep learning provide an intelligent way for analysis

Robot Path Planning

- Advanced Optimization Algorithm for Robot Path Planning
 - Path planning is an essential task for the navigation and motion control of autonomous robot manipulators
 - A difficult task especially in the situation that the optimal path needs to be rerouted in real-time when a new obstacle appears
 - Biologically inspired methods such as swarm intelligence and advanced search algorithms can be applied to find the best route for autonomous robots in a dynamic environment

Control Systems Applications

- Collective movement for multi-robots
 - Decentralized multi-robot formation control
 - Social robots
- System Identification

- A "non-parametric" approach ^{0% accomplished} ^{50% accomplished} ^{100% accomplished}
 with no or less a priori knowledge of the system dynamics
- Reinforcement learning
 - Inspired by natural learning mechanisms, where animals adjust their actions based on reward and punishment stimuli received (the "cause-and- effect" relationship)
 - A system that can improve its performance based on the results of previous actions

Electricity Price Prediction

- In electricity market, electricity is a commodity that can be bought, sold, and traded
 - Electricity is, by its nature, usually difficult to store and has to be available on demand
 - Power system stability requires a constant balance between production and consumption
 - Electricity demand depends on many factors such as weather conditions, daily activities (e.g. peak-hours), etc.
 - The goal is to develop an intelligent model to predict electricity price

Power System Fault Detection & Classification

- Monitoring the performance of power network automatically is an important component of modern "smart grid"
 - A single fault, even when lasting only for a fraction of a second, may affect potentially millions of customers on the grid and result in huge losses and manufacturing downtime in industry
 - These power quality events (PQEs) can be caused by natural disasters, equipment failures, or human errors

Fault #1

Fault #2

Need More Information?

- Contact Dr. Yu for more project information <u>xhyu@calpoly.edu</u>
- Some programming skills are preferred (any language is OK)
- Other projects may also be available upon request and discussion. You are also welcome to propose your own ideas