Genes and Molecular Mechanisms Associated with Mastitis in Dairy Cattle

Khin M. Han

Dr. Mohammed Abo-Ismail, Animal Science Department

Introduction

- The dairy industry accounts for 7.57 billion dollars of California's economy. There is a significant financial loss due to reduction in milk from the costliest disease called mastitis ranging from \$155 to \$224 for each case.
- Mastitis can be caused by a multitude of reasons from physical trauma to genetic factors.
- Detecting mutations in heifer will allow us to accurately predict the genomic values for Mastitis.

Objective

- To detect genomic value that is resistant to mastitis
- To test the association between these specific genomic value and mastitis disease
- To understand the molecular mechanisms behind these associations

Methods and Materials

• The quality control for genotypes and subsequent analyses are illustrated in **Figure 1**.

Figure 1. Workflow for data analyses

Results and Discussion

- The identified top 10 SNPs from GWAS with the lowest p-value in the mixed linear model were mapped to 25 genes.
 - The top significant genetic variants were located on Bos taurus autosomes 5, 3, 19,10, 9, and 20

Figure 2. The most significant chromosomes associated with mastitis produced from Genome-Wide Association Analyses are presented on the Manhattan plot.

• With these significant genes inputted into DAVID Enrichment analyses identify the most significant KEGG Pathway and biological Pathway.

Figure 3. The most significant KEGG Pathway resulted from enrichment.

Results and Discussion Cont.

- The most significant KEGG Pathways were neurodegeneration, neuroactive ligand-receptor interaction, and amyotrophic lateral sclerosis.
- The most significant biological Pathways were positive regulation of metabolic process, regulation of signaling, and positive regulation of cellular metabolic process.

Conclusions

- The study identified candidate genes that is associated with heifers being born with mastitis disease. These genes are involved in potential pathways including metabolic pathway.
- Further validation of the identified genomic regions will be performed to test the correlation of these genes and its association with mastitis.
- This may include looking at SNPs with higher density

References

- [1] Yang et al. 2011. Am J Hum Genet, 88: 76-82
- [2] http://useast.ensembl.org/biomart/martview
- [3] Huang et al. 2009. Nature Protoc., 4: 44-57.
- [4] Ariel O et al. (2021). BMC genomics vol.22.:

Acknowledgements

