INVESTIGATING TEMPORAL STRAIN DIVERSITY IN HUMAN E. COLI POPULATIONS USING PYROPRINTING: A NOVEL STRAIN IDENTIFICATION METHOD

Background

Why E. coli?

 Found in GI tract in many mammals, birds, and reptiles

Indicator for fecal contamination

Microbial Source Tracking

CURRENT METHODS FOR STRAIN IDENTIFICATION HAVE PROBLEMS

- Reproducibility
 - Randomly amplified polymorphic DNA (RAPD)
 - Repetitive extragenic palindromic PCR (rep-PCR)
 - Biochemical Profiling
- Time Intensive/Laborious
 - Pulsed-field gel electrophoresis (PFGE)
 - Ribotyping

- Expensive
 - PFGE
 - Multilocus enzyme electrophoresis (MLEE)

- Sensitivity
 - Antibiotic resistance profiles (ARP)
 - Serotyping

Solution: Pyroprinting!

The Questions

How do E. coli populations vary over time in human individuals?

How many different strains are detected over the total time period?

How frequently are strains detected?

How does population variation differ between individual hosts?

The Hypothesis

 Hosts will carry the same 1-2 dominant strains throughout the study

 Different minor strains will be detected throughout the study

The Method

Sampling

PCR

Pyroprinting

Clustering

Work Flow

E. coli Collection & Isolation

- Collect & swab fecal samples
 - □ 3 individuals
 - □ 6 months
 - 15 isolates (colonies)once a month
- Metabolic confirmation

Colony PCR

Ribosomal RNA Locus

16S ITS 1 23S ITS 2 5S

- □ ITS: Intergenic Transcribed Spacer
 - Non-coding
 - Increased accumulation of mutations

Colony PCR

Ribosomal RNA Locus

x 7 copies in E. coli genome

Colony PCR

Ribosomal RNA Locus

Pyroprinting

What is a Pyroprint?

- Obtained through pyrosequencing
- Similar to a "fingerprint"
 - Used for identification— not information

 Creates a unique pattern of peaks based on DNA sequences from all 7 ITS copies

Data Output

Extract Peak Heights

Data Processing

Sim(X, Y) = Pearson(X, Y)

Hu-404

Hu-700

 $M_{ITS1}[Hu-404, Hu-700] = Sim(X, Y)$

 $M_{ITS2}[Hu-404, Hu-700] = Sim(X, Y)$

Data Processing

If $Shh(Sim(X,Y)) > \overline{\beta}$ and $Sim_{ITS2}(Sim(X,Y)) < \beta$

$$Sim(X_{im}(X_{im}, X_{im})) = Avg(Sim_{ITS1}, Sim_{ITS2}(X_{im}, Y)) := 0$$

Hu-404

Hu-700

Novel Clustering Algorithm

Aldrin Montana, Alexander Dekhtyar, Emily Neal, Michael Black, and Chris Kitts. 2011. Chronology-Sensitive Hierarchical Clustering of Pyrosequenced DNA Samples of E. coli: A Case Study. In Proceedings of the 2011 IEEE International Conference on Bioinformatics and Biomedicine (BIBM '11). IEEE Computer Society, Washington, DC, USA, 155-159.

Clustering Approach

Results

Person A

of Isolates

Person B

of Isolates

Person C

of Isolates

Conclusions

What We Know So Far...

- Strain discrimination with pyroprinting
 - It's possible!
 - More sensitive than other methods
- Hypothesis supported....partially
- Variation is variable!
 - Population structures in different humans may vary in different ways
- Change will occur
 - Supported by both this study and literature

Future Work

More data to analyze!

Building a database

More temporal studies

Broad human population studies

Future Work

Questions?

Clustering Approach

