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Interactive Physical Experiments in an Advanced 

Undergraduate Structural Dynamics Course  

Abstract 

This paper describes a number of physical models and hands-on lab activities incorporated in an 

advanced undergraduate structural dynamics lecture and laboratory course pairing offered within 

the Architectural Engineering department at California Polytechnic State University – San Luis 

Obispo. These course modifications were designed and implemented in the Winter 2018 quarter 

to enable students to:  
 

 Collect acceleration data during free or forced vibration tests using a smartphone 

accelerometer application to generate data plots in Matlab; 

 Conduct free vibration tests on various single-degree of freedom (SDOF) systems to 

investigate effects of varying mass, stiffness/height, material type, and damping type 

(pendulum or sloshing damper) on structural period and damping behavior; 

 Observe and analyze data from forced vibration tests using a small-scale shake table or 

eccentric mass shaker for various SDOF systems, diaphragms, and multi-story frames to 

understand natural frequency, dynamic amplification, and mode shapes; and 

 Execute a parametric study using Matlab interface that animates modal and time history 

response of a rigid diaphragm to illustrate impacts of changing mass, geometry, or 

stiffness.  
 

Students were surveyed at the end of the Winter 2018 quarter, and their responses with regards to 

the new physical experiments/demonstrations were largely positive. In general, they indicated 

that observing the dynamic response of physical structural models; collecting and processing 

data; and comparing the results to theoretical predictions was engaging and encourages them to 

develop their engineering intuition, rather than memorize equations or procedures.  

Introduction 

It is uncommon for a course in advanced structural dynamics, with a focus on earthquake 

engineering concepts, to be required in the undergraduate civil/architectural engineering 

curriculum. The exclusion of this class is the result of one or more of the following factors: 
 

 technical complexity of course topics, 

 lack of modern textbooks that serve to adequately explain challenging concepts,1 

 limited perceived necessity based on the majority of undergraduate student career paths,  

 availability of course at the graduate level for interested students, and/or 

 undergraduate degree credit hour constraints that restrict offering advanced electives. 
 

Universities that have historically offered structural dynamics at the undergraduate level seem to 

be located in a region with high earthquake hazard, at sites affiliated with a National Science 

Foundation (NSF) Network for Earthquake Engineering Simulation (NEES), or polytechnic/ 

technical institutions. When the course is offered at the undergraduate level, the curriculum 

includes analysis of single and multiple degree-of-freedom dynamic systems subject to free or 

forced vibration. With respect to earthquake excitations, students learn about response spectrum 

and response history analysis methods. Available literature on structural dynamics course 



instruction underscores the importance of incorporating hands-on experimentation coupled with 

data analysis and/or computer simulation to not only help students develop their intuition, but 

also their confidence in conducting engineering calculations. Some examples of the instructional 

efforts related to physical and virtual experiments follow. 

Physical Experiments  

One of the most ubiquitous physical demonstrations for a structural dynamics class with 

earthquake engineering focus is a set of lumped mass models consisting of a cylindrical metal 

mass atop a threaded rod fixed to a movable base plate. These lumped mass models are 

constructed with variable mass weights or heights to demonstrate how ground motions with 

distinct frequency content impact structures in different ways. This model is typically used for 

observational purposes, rather than for an experiment, as there is no applied instrumentation that 

allows students to engage in data processing and analysis.2 

 

An experiment that is utilized in many dynamics lab courses is a simple spring-mass system 

where students conduct a static stiffness test and weigh the mass to calculate the natural 

frequency of the system.3 Helgeson4 expands on this idea by utilizing a piezoelectric 

accelerometer to capture free vibration test data so students can experimentally determine natural 

frequency and damping values to compare with results from their Matlab Simulink simulations. 

This is a prime example of how to transition students from using straightforward analytical 

equations to higher level thinking required for developing their own computational models. 

 

Small-scale steel frames are another popular experimental specimen to utilize in teaching 

structural dynamics. Typically a set of these are constructed and consist of at least a 1-story and 

2+ - story model. Common test scenarios for free, impact, or harmonic forced vibration include: 

bare frame; additional of mass at each story; viscous, friction, or beam dampers; and/or base 

isolation. Instrumentation often includes piezoelectric accelerometers, strain gauges, and linear 

variable differential transformer (LVDT) sensors located at each floor level to enable the conduct 

of a Fast Fourier Transform (FFT) and determination of mode frequencies, shapes, and damping 

ratios.2-5  Tito-Izquierdo et al.3 and Helgeson4 had students develop computer models of the multi 

degree-of-freedom steel frame system to compare experimental and predicted values (software 

used was Matlab Simulink and the FEM software VisualAnalysis v5.5, respectively). 

 

Several lab activities link the topics of structural dynamics and structural health monitoring. 

Riley et al.6 describes free vibration tests on wood 2x4 cantilever beams with 0%, 25%, and 50% 

cross-section reduction to represent varying levels of damage. Using an iPhone with an internal 

triple-axis accelerometer and the iSeismometer application, students analyzed acceleration time 

history data to correlate damage level to dynamic properties like natural frequency/period and 

damping ratio. Similarly, Tito-Izquierdo et al.3 summarized dynamic tests of one reinforced 

concrete and one prestressed concrete T-beam in the un-cracked, cracked, and repaired states 

(large cracks were epoxy injected). Data collected with a piezoelectric accelerometer was 

utilized to conduct the FFT and determine the fundamental frequency of the system for each of 

the three damage conditions.   



Virtual Experiments 

Student assessments of the demonstrations and experiments described in the previous section 

indicate these hands-on activities are engaging and educational for their students. However, cost 

and time constraints can be limiting when conducting physical parametric studies especially for 

non-linear systems. In these scenarios, virtual experiments are an attractive alternative. 

 

Jacquot et al.7 describes a Matlab script that animates a variety of beam vibration problems. 

Students can modify boundary conditions (pin-pin, pin-fix, fix-free, fix-fix), loading (point or 

distributed load), and input excitation (free vibration, unit impulse, unit step, cosine harmonic 

function). They can then examine the overall deflected shape of the beam at various points in 

time, or select individual points along the beam for which to plot displacement, velocity, or 

acceleration time histories. This simulation tool has a low barrier to entry with respect to prior 

knowledge, cost, and speed of use when compared to most finite element modelling tools that 

would enable a similar parametric study. To be clear, these ideas have been explored 

experimentally using an aluminum cantilever beam with rotating eccentric mass4 and simply 

supported aluminum beam subject to unit impulse3, but it is not reasonable to try and examine 

each parameter available in the Matlab program through physical testing. 

 

Gao et al.8 summarizes an online Java tool that allows students to investigate the response of a 

multi-story framed structure equipped with various structural control techniques such as a tuned 

mass damper, hybrid mass damper, linear or non-linear base isolation. Users can change the 

input parameters for each of these control methods to observe an animation of how baseline and 

control system behave when subjected to one of four earthquake motions. The tool displays 

displacement, velocity, and acceleration for any selected point along each structure; response 

spectra; and indication of performance gains from the baseline. This virtual lab is particularly 

useful since the physical model would be expected to undergo some level of nonlinear behavior 

in order to engage the structural control systems, necessitating replacement or repair of the 

model. Other considerations would be the time and cost to develop and test a wide range of tuned 

mass dampers, hybrid mass dampers, or base isolation; not to mention, the specific area 

knowledge to teach students how to model each control system in their computer simulation. 

Course Details 

The undergraduate Architectural Engineering (ARCE) program at California Polytechnic State 

University – San Luis Obispo (Cal Poly) places a significant focus on earthquake engineering as 

the vast majority of students are hired directly into West Coast structural design and construction 

firms. The industry expectation that young engineers have proficiency in this topic area, and the 

seismic design requirement for Professional Engineer (PE) licensure in California, are motivating 

factors in offering both structural dynamics and earthquake engineering to undergraduates. The 

junior-level ARCE 412: Dynamics of Framed Structures and accompanying ARCE 354: 

Numerical Analysis Laboratory course pairing is the subject of this paper.  

 

The ARCE 412/354 pairing is preceded by two structural analysis lecture courses that cover 

topics of double integration method, virtual work, slope-deflection method, matrix analysis as 

well as introductory discussions of plastic analysis and finite element method. Each of these 

courses is taken with a lab where students are introduced to Matlab as a means to program the 

hand-solution methods introduced in lecture. Additionally, they are exposed to commercial 



structural analysis software, typically RISA-3D or SAP2000, based on instructor preference. 

Outside of the ARCE department, students are also required to take the ME 212: Engineering 

Dynamics course related to particle and rigid body motion. This array of pre-requisite classes 

prepare students for the tasks of developing stiffness and matrix matrices for a variety of 

structural systems and to understand the basic input excitations that produce structural vibrations.  

 

The ARCE 412/354 courses meets for a ten week quarter with three lecture sessions of 50 

minutes (maximum 32 students) and a laboratory session of three hours (maximum 16 students). 

The curriculum is intended to lay the foundation for the subsequent ARCE 483: Seismic Analysis 

and Design course and draws on content from the Chopra Dynamics of Structures, 5th ed. 

textbook (portions of Chapters 1-6, 9-10, and 12-13).9 Topic areas include: 
 

 Introduction to Structural Dynamics and Review of Direct Stiffness Method  

 Single Degree-of-Freedom (SDOF) System: Free Vibration  

 SDOF System: Forced Vibration (Harmonic/Periodic)  

 Numerical Evaluation for Arbitrary Forced Vibration  

 Earthquake Response and Development of Response Spectra based on SDOF 

 Multiple Degree-of-Freedom (MDOF) System: Development of Stiffness/Mass Matrices 

 MDOF: Free Vibration  

 MDOF: Modal Analysis 

 MDOF: Earthquake Analysis via Response Spectrum and Response History Analyses 
 

The overarching objective of the lecture is for students to become confident in developing a 

mathematical model to describe system response for free vibration and various types of forced 

vibration, particularly earthquake ground motions. The lab is intended to expose students to 

numerical analysis techniques that support the solution of structural dynamics problems 

(numerical integration as well as solution of ordinary differential equations, nonlinear equations 

and symmetric eigenproblems).  

 

In previous iterations of ARCE 412/354, the instruction method included lectures with example 

calculations and homework problem sets requiring hand solution, while in lab, there were Matlab 

programming activities implementing the numerical solution methods. There were only two 

physical models used in the classes, a set of lumped mass models of varying heights similar to 

that described in Kukreti and Baseheart2 and the triangular frame model introduced in the 

subsequent section of this paper. The first demonstration was primarily observational, and the 

latter involved only a timer and ruler to approximate the structure’s period and damping from 

free vibration test results. While these activities inform students’ intuition and ability to visualize 

dynamic response, it is limited considering the total 55 hours of class/lab time.  The research 

team posited that improvements to existing hands-on experiments and addition of new activities 

in ARCE 412/354 would better prepare students for the subsequent ARCE 483 course. There 

students designed and instrumented base-isolated K’Nex structures for shake-table testing10, 

instrumented buildings on campus to conduct ambient and ultra-low forced vibration tests, and 

compared experimentally obtained modal frequencies and shapes of the buildings to ETABS 

models they had created.11-13  

 

The remainder of this paper describes the bench-top physical experiments and virtual laboratory 

interface developed as part of the student co-author’s senior project and implemented by the 

faculty co-author beginning in the Winter 2018 (W18) quarter offering of ARCE 412/354. From 



an educator standpoint, efforts were made to keep physical models relatively easy to fabricate 

using machine shop equipment, low cost, and portable. From an educational standpoint, the goal 

of modifying the course was to expose students to physical experiments to foster their: (i) 

engineering intuition and calculation abilities, (ii) proficiency in data acquisition applications 

available on smart phones, (iii) data post-processing, analysis, and visualization skills in Matlab, 

(iv) writing thoughtful reflections in lab reports based on observations and quantitative data 

results, and (v) teamwork. Also, the hope was to engage and excite students in the course topic. 

Description of Physical / Virtual Experiments 

The course activities are summarized below in the order they were covered in class. Additional 

details related to course instruction (lab handouts), model fabrication (materials, budget, 

drawings), and sample solutions are presented in the full research project report.14 Additional 

teaching resources, such as sample data and Matlab files, are available to architectural/civil 

engineering instructors upon email request from the faculty co-author. 

Implementation of Smartphone Accelerometer Applications 

The majority of the physical experiments in this section utilize a smartphone tri-axis 

accelerometer application as a data acquisition (DAQ) tool, as it is a relatable and available 

platform to most students.6 In developing the ARCE 412/354 activities it was already known that 

students would receive extensive exposure to professional grade, piezoelectric accelerometers in 

the subsequent ARCE 483 course. The selection of the smartphone accelerometer application 

was to train and expose students to a tool they typically have on hand throughout their daily lives 

and could use to readily collect acceleration data outside of the classroom. Some examples the 

instructor suggested to students were when they ride their bikes or skateboards to school, when 

their washer vibrates due to a clothing imbalance during the spin cycle, or when they felt 

building vibrations due to traffic, construction, or earthquakes.  

 

In the course, two free applications were introduced for the different smart phone operating 

systems: “Accelerometer” application by DreamArc for iOS15 and “Physics Toolbox 

Accelerometer” by Vieyra Software for Android16. Both applications allow users to calibrate the 

accelerometer readings; select which directions of motion should be visualized and recorded (x-,-

y-, or z-axis) during the experiment; and export data to a number of filetypes for post-processing 

(csv, json, xml). A brief instruction guide was developed for using the iOS accelerometer 

application, importing data into Matlab, and providing basic Matlab plotting instructions to 

complete data analysis and visualization tasks.14 

Single Degree of Freedom System: Free Vibration 

The single degree of freedom (SDOF) physical model is conceptually similar to the lumped mass 

model with a fixed-free column and concentrated mass as described in Kukreti and Baseheart2 

However, in addition to enabling students to investigate the effects of the column height they can 

examine varying material types. The final assortment of specimens were 1-inch wide and of 12, 

18, and 22-inch lengths fabricated from 1/16-inch thick steel, 1/4-inch thick Plexiglas, and 1/4-

inch thick wood. The specimen thickness for each material type was selected to have appreciable 

oscillations during free vibration without buckling under the weight of the lumped mass (phone 

and phone mount).  

 



The experimental set-up consists of a steel base-plate with vertical mounting tab. The steel base-

plate was designed to be sufficiently heavy to avoid rocking without the need for clamping to a 

table-top. Each column specimen has two holes at each end: at the base to thread onto the 

mounting tab and secure with a wing nut, and at the free end to affix the phone mount. The base 

plate, specimens and phone mount were fabricated with a water jet cutter. After cutting the 24-

gauge steel sheet metal pattern for the phone mount, it was folded origami-style. The 

experimental set-up and detailed renderings of individual components are shown in Figure 1. 

 

In this lab activity, student groups were assigned a column specimen material type and they 

measured dimensions, mass, and estimate material properties of those specimens to analytically 

determine the stiffness, natural circular frequency, and period for the SDOF fixed-free systems. 

The group then downloaded the smartphone accelerometer application, set up the experiment as 

shown in Figure 1, started recording data, and conducted a free vibration test. Once oscillations 

had attenuated, data collection was terminated, and students emailed themselves the data as a 

comma separated values (.csv) file. They imported the acceleration data into Matlab to plot the 

acceleration time history for each cantilever, like those shown in Figure 2, and determine the 

period which they compare with the values from hand calculations. Students shared data between 

groups to make compare dynamic response of other specimen materials. In their lab report, they 

commented on differences in response based on member height and material, and potential 

sources of error between analytical and experimental results. Note that the topic of damping and 

logarithmic-decrement method had not yet been covered as this lab occurred in the first week of 

the quarter, but they did comment on damping related to how quickly the oscillations attenuate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. SDOF System  

 

a) Experimental set-up b) Renderings of individual components 

 



 
 

Figure 2. Sample free vibration plots for steel column specimens 

Damping Approaches: Triangular Frame Model  

In previous academic quarters, the triangular model shown in Figure 3 was utilized to conduct 

free vibration tests to estimate the period of this structure by using a stopwatch to measure the 

time it takes to complete twenty cycles of motion, and the damping ratio by determining the 

number of cycles required for the displacement amplitude to decrease from 3 to 1-inches. The 

major update to the triangular model was an attachment for pendulum mass and sloshing liquid 

dampers to demonstrate the effects of different damping mechanisms. The update had three 

fabrication components: (i) upper mount which can hold slotted masses or a plastic container 

filled with water as well as phone mount, (ii) lower mount with a pendulum that can be 

locked/unlocked and loaded with slotted weights at various heights, and (iii) five slotted weights. 

As before all metal components were cut using the water jet cutter. A rendering of the 

experimental set-up and photograph of the upper/lower mount are shown in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 3. Triangular frame model 

 

a) Rendering of experimental set-up 

(gray = original, red = update) 
b) Detail of upper/lower mount 

 



Student groups were instructed to conduct a free vibration test and collect acceleration data/video 

for one of the scenarios in Figure 4: (a) locked pendulum with no slotted weights, (b) locked 

pendulum with slotted weights fixed on the top of the structure, (c) locked pendulum with slotted 

weights on pendulum, (d) unlocked pendulum with slotted weights on pendulum, and (e) plastic 

container filled with water equivalent to weight of slotted weights (a measuring cup indicating 

the volume of water equivalent to one slotted weight is provided). Students were given a table of 

values summarizing weight of each components to determine the mass for the five scenarios.  

Once the data were recorded, students plotted the acceleration time history in Matlab and 

implemented the logarithmic-decrement method to determine the damping ratio and associated 

damping coefficient for conditions (a-b). Students used mass, calculated stiffness, and damping 

coefficient values to develop an equation of motion for damped free vibration and to plot the 

idealized displacement time history. Lastly, students commented on the damping values they 

calculated as well as trends they observed in the damped scenarios. 

 
 

 
 

Figure 4. Test configurations for triangular frame model 

 

Figure 5 shows the measured acceleration time histories for three cases with essentially identical 

additional mass except how it is applied: slotted metal weights fixed to the upper mount (internal 

damping only), slotted metal weights hanging from an unlocked pendulum (internal + pendulum 

damper), or water (internal + sloshing damper). Students were able to observe the more rapid 

attenuation of oscillatory motion with the swinging mass pendulum and sloshing water, though 

the response amplitude was less periodic/predictable cycle-to-cycle. This is an attempt to capture 

the type of nonlinear control systems presented in virtual laboratory examples from Gao et al.8 

 

 

 

 

 

 

 

a)                         b)                         c)                              d)                         e) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 5. Triangular frame model response for various damping approaches 

Single Degree of Freedom System: Harmonic Forced Vibration 

This activity used the steel column specimens described in “SDOF System: Free Vibration” to 

introduce students to the concept of dynamic amplification of static displacements due to a 

harmonic force input. Students first observed a frequency sweep for the 12- and 22- inch steel 

column models on a Quanser Shake Table II and helped identify resonant frequencies based on 

observed deformations. Students then used acceleration data collected prior to class of a 

frequency sweep for the 22-inch steel specimen to experimentally determine natural frequency 

and damping ratio of this system. Figure 6 shows the two harmonic test set-ups on the shake 

table for the in-class portion and the frequency sweep data collection conducted prior to class. 

Note the orange clamps serve as additional mass for the SDOF system. 

 

 

 

 

 

              

 

 

           

Figure 6. SDOF system shake table tests 

a) In-class demonstration 

 

b) Frequency sweep data collection 

 



 

To elaborate, the process of recording acceleration data for the frequency sweep was time 

intensive (upwards of two hours); therefore, it was not possible for students to record and 

analyze the data in a single three-hour lab session. To address this, the acceleration data were 

recorded by the authors beforehand, and the raw acceleration data was given to the students in a 

single Excel file. To perform the frequency sweep the following steps were executed: 
 

 determine approximate resonant frequency resonant based on observed response (1 Hz),  

 select a total of 15-20 input frequency targets approaching resonance (0.5 to 3 Hz),  

 input a single frequency target into the shake table,  

 collect at least 20-30 seconds of data with the smart phone accelerometer tool, 

 plot measured acceleration time history as well as peak acceleration (per time history)  

versus frequency to insure there were no erroneous readings,  

 repeat data collection if there are erroneous results 

 when results are accurate for the given frequency, continue to next frequency input, and 

 when all frequencies have accurate results, compile acceleration time history data for 

each frequency into an organized spreadsheet to provide students. 

Students then determine the maximum value for the acceleration time history associated with 

each frequency to develop the experimental dynamic amplification curve of peak accelerations 

versus frequency as shown in Figure 7. Via peak picking they can determine the natural 

frequency and using half-power bandwidth method they can calculate the damping ratio. Details 

on this process can be found in the full research project report.14 

 
Figure 7. Experimentally determined dynamic amplification curve 

 

As a note, the University Consortium of Instructional Shake Tables (UCIST) has many more 

shake table experiment teaching modules that utilize the Quanser Shake Table II to address 

structural dynamics concepts at the K-12, undergraduate, and graduate level. The modules, 

necessary equipment are described at the UCIST project webpage.17 



Multiple Degree of Freedom System: Rigid Diaphragm (Physical Model) 

One type of multiple degree of freedom (MDOF) structure explored in the course was a single-

story rigid diaphragm structure with various configurations. Students derived the stiffness matrix 

by first determining the lateral stiffness of each wall, brace, and/or column, and implementing 

the direct stiffness method by applying a unit displacement to each DOF to resultant force; a 

similar logic was used to find the mass matrix. Once stiffness and mass matrices were known; 

students solved the eigenvalue problem to determine eigenvalues (natural frequencies) and 

eigenvectors (mode shapes). 

Students find it straightforward to solve the eigenvalue problem, yet have difficulties 

understanding that the response of a MDOF system is a combination of its modal responses. If a 

structure is oscillating at one of its natural frequencies, then the motion is harmonic, and the 

deformation pattern takes on the mode shape. However, earthquake ground motion excitations 

cause arbitrary displacements and therefore the structural response is described by the product of 

the mode shapes and modal displacements (the latter incorporates a modal participation factor 

that weights the contribution of each mode).  

To help clarify these concepts, the single story diaphragm model shown in Figure 8 was 

constructed. It consists of a rigid plexiglass diaphragm, foam shear walls, and a wood base plate. 

The plexiglass diaphragm and wood base plate each have a grid of cut-out square sockets to 

allow the shear walls to be arranged in any configuration. The shear walls and diaphragm 

connections were designed to prevent buckling while also exhibiting negligible out-of-plane 

stiffness and uplift. This diaphragm model was used in a lecture demonstration where a small 

unidirectional mass shaker was placed on top of the model, and the input frequency was 

increased until the natural frequency associated with one of the modes was reached. This was 

repeated for each of the modes which required for the shaker to be placed in different 

orientations to clearly activate the different mode shapes.  

 

 

 

Figure 8. MDOF rigid diaphragm system 

a) Overview of rigid diaphragm model 

 

b)  Shear wall – diaphragm connection 

 



Multiple Degree of Freedom System: Rigid Diaphragm (Virtual Experiment) 

As indicated in Jacquot et al.7 and Gao et al.8 parametric experimental tests in structural 

dynamics courses require considerable time and resources. A virtual model can be distributed to 

students to experiment as a homework exercise and can illustrate structural dynamics concepts 

difficult to physically model without specialized testing equipment. The example in the rigid 

diaphragm model discussed below is a MDOF system’s response to multi-directional ground 

motion; this cannot be achieved with the uni-directional shake tables or shakers available at Cal 

Poly and most other teaching institutions. 

The MATLAB virtual diaphragm model, shown in Figure 9, is integrated into a homework 

assignment to complement the physical rigid diaphragm model demonstration conducted during 

lecture. The virtual model allowed students to change the mass and geometric configuration of 

the diaphragm as well as the locations, heights, and stiffness of columns, and automatically 

calculates the mass/stiffness matrices and mode shapes. It also determines the displacement time 

histories to produce animations of each mode shape and the response to the El Centro ground 

motion. The MATLAB scripts, functions, figures (Newmark’s Linear Acceleration Method used 

for numerical integration, El Centro ground motion data, and visual interface), and instructions 

are available to architectural/civil engineering instructors upon email request from the faculty co-

author. 

 

Figure 9. Rigid diaphragm virtual experiment  

Multiple Degree of Freedom System: Planar Frames 

The set of wood planar frame models shown in Figure 10 was fabricated in W18, but there was 

insufficient time to implement them before the end of the course. They are similar in nature to 

the steel frames described in Kukreti and Baseheart, Tito-Izquierdo et al. and Helgeson.2-5 This 

type of planar frame, with its flexible columns and rigid beams, is a very common SDOF/MDOF 

system that students analyze in structural dynamics courses. A set of 1, 2, and 3-story physical 



portal frame models were developed to use on the shake table to explore resonance and mode 

shapes. At each story level there is a vertically oriented threaded rod to place washers to provide 

additional mass, and horizontal threaded rods to accommodate braces to increase the story 

stiffness.  

 

 

 

 

 

 

 

 

 

Figure 10. Planar frame models  

Summary of Student Assessment 

All sixteen students enrolled in the W18 quarter provided consent for participation in the 

research study and completed a end-of-quarter survey with 23 multiple choice and 7 free 

response questions on the effectiveness of the lab activities, physical models, and 

demonstrations.  

General Multiple Choice Survey Questions 

The general five-point Likert scale questions posed in the survey are summarized in Figure 11. 

Note that that rating scale is 5 =Strongly Agree, 1 = Strongly Disagree, unless otherwise noted. 

Also, not all students responded to every question (missing one respondent on Q3). 
 

Q1. How well does the instructor coordinate the use of physical demonstrations or models in 

the course? (5 = Very Well, 1 = Poorly). Average Score = 4.19  
 

Q2. The physical demonstrations or models provided a valuable visual reference when 

completing in class exercises, homework, or exams. Average Score = 4.13  
  

Q3. Hands-on experiments, demonstrations, or models used in ARCE 354 were helpful in 

understanding structural dynamics concepts. Average Score = 4.33   
 

Q4. The use of smart phones in lab (ie. accelerometer application) made data collection more 

interesting and accessible to me. Average Score = 4.19 

 

a) Overview of planar frame models 

 

b) Mass and brace attachment details 

 



                          
 

Figure 11: Distribution of Student Responses to General Multiple Choice Questions 

(5 = Strongly Agree, 1= Strong Disagree) 

 

The responses were predominately positive or very positive for every question. Considering this 

was the first iteration of course with the new experimental/virtual experiments this was seen as a 

success. The co-authors identified several areas to improve the physical models and instructions 

on software usage (smart phone accelerometer application and Matlab) that were implemented in 

the Spring 2018 (S18) offering. In particular, the authors suspect that 25% of students indicated 

negative or neutral responses to use of the smart phone accelerometer application due to 

difficulties using the application as data was truncated or did not save, and students had to re-

record the data.  

Specific Multiple Choice Questions  

The following five-point Likert scale questions posed in the survey are on particular physical/ 

virtual experiments. Note the scale is 5 = Effective/Interesting, 1 = Ineffective/Uninteresting.   

 SDOF Free Vibration: Collecting acceleration data for SDOF of diff. materials/heights   

 Damping: Collecting data with triangular model (sloshing/tuned-mass damper)  

 Forced Vibration: Conducting frequency sweep on column models using shake table   

 Dynamic Amplification: Processing frequency sweep data to create an Rd curve  

 MDOF Diaphragm: Experimenting with a mass shaker on the diaphragm model  

 MDOF Mode Shapes: Testing 3 story portal frame models on shake table (*video)  

 MDOF Animations: Experimenting with MATLAB GUI to visualize mode shapes   

Three clarifications on the list presented above: 

1. The activity described in the section “SDOF System: Harmonic Forced Vibration” was 

divided into two questions as students experimented with the shake table without 

recording any acceleration data and then were given an Excel file with the acceleration 

time histories for a range of forcing frequencies to process with Matlab.  

2. The MDOF Mode Shapes for portal frame refers to two videos of frequency sweeps 

(conducted by Professor Oh-sung Kwon while at Missouri S&T)18-19 rather than the 

models described “MDOF System: Planar Frames” as there was not time to implement 

an experimental test with these models at the end of the W18 quarter. 

3. Matlab Graphical User Interface (GUI) was assigned to students as an extra credit 

activity in Homework #7 for W18. 



 

Figure 12: Distribution of Student Responses to Specific Multiple Choice Questions, 

(5 = Effective/Interesting, 1 = Ineffective/Uninteresting) 

 

The responses are generally positive, with only three negative responses total; however, there are 

a number of neutral responses. The questions here are ordered chronologically, and as the quarter 

progresses the rigor and speed of the course continues to increase. Furthermore, some of the later 

MDOF activities are observational (or optional), rather than hands-on experiments conducted by 

the students themselves. This may explain the trend seen in Figure 12, where the responses are 

mostly positive for the earlier lab activities, and wane slightly in later activities.  

Free Response Questions 

The survey included seven free response questions, three of which ask specifically about the 

physical models, lab activities, or demonstrations discussed in this document. The following list 

summarizes the general student sentiment on the new physical/virtual experiments incorporated 

in the W18 offering of ARCE 412/354: 

 Much of student understanding came from physically doing or seeing things, and the 

experiments were a welcome complement to learning they gained by practicing 

calculation problems in homework.  

 Lab activities increased their engagement with class topics, and students indicated that 

the hands-on activities were genuinely enjoyable as well. Some students indicated the 

desire for more activities or more time allocated for these types of activities. 

 There were a few student suggestions for modifications to the physical models to 

improve the conduct of experiments and accuracy of data acquisition. 

 Other critical comments indicate there were not enough experimental set-ups to enable all 

teams or team members to have tasks they could be working on at once. 

 

 

 

 



Specific student quotes that focus on the benefits of the new course activities: 
 

“I loved [the physical models, demonstrations, and/or experiments]! Visually seeing the concepts we 

discussed was incredibly beneficial because I am a visual learner.” 

“The [physical models, demonstrations, and/or experiments] we had were very interesting. Just seeing 

how systems reacted really helped me in solving my calcs with more understanding.” 

“I found that that lab experiments were very helpful in explaining concepts. Keep these! Or even 

create more” 

“The homeworks and hands-on experiments [have been the most beneficial aspects of this course]. I 

found that the homework helped a lot with understanding the roles of variables and the experiments 

helped me with visualizing what is happening in my calcs.” 

“Hands-on experiments [and] anything that is related to reality & industry [have been the most 

beneficial aspects of this course].” 

Additional student quotes ranging from strongly positive to constructive feedback to improve 

physical experiments can be found in the full research project report.14 

Lessons Learned 

Beyond improving students’ intuition related to course concepts and associated calculation 

approaches, the instructor noted that students seemed more engaged in the small team, hands-on 

experiments than prior labs and more interested in ARCE 412/354 overall. After analyzing the 

student feedback responses and reflecting on instruction of this iteration of the structural 

dynamics course, the authors would like to provide the following lessons learned: 

 

 Students’ educational and personal experiences in structural dynamics are enriched 

through visual and physical engagement with the models in lab experiments. Surveys 

in ARCE 412/354 indicate opportunities where students conduct their own test, collect 

data, and analyze results as most effective in building their structural engineering 

intuition and enjoyment of the topic. A near second is watching the instructor conduct a 

live physical demonstration that they can interact with, and the least effective is having 

students watch a video of a physical demonstration. 

 Students seek to connect their theoretical learning with the real world. Incorporating 

physical experiments into the course gives students the opportunity to use the equations 

taught in class to predict the behavior of a physical model, which they can compare to the 

experimental results. This comparison of theoretical and experimental results is not only 

engaging, but it makes students more confident that those equations are valid. 

 Students are able to create more descriptive lab reports when posed with an 

experimental rather than simply coding or calculation activity on a given topic. 

Previous to the new experiments, student reports were primarily a summary of their 

Matlab code and outputs. With the experimental activities, the lab reports have evolved to 

include experimental set-up photos and drawings, tables and graphs summarizing 

specimen properties and dynamic response, and written reflections on the results. While 

Matlab was still being used to calculate and visualize results, the new lab activities 

motivate students to practice a variety of valuable research and communication skills. 



 Regular homework and testing is also important to ensure that students retain 

theoretical material underlying the physical/virtual experiments. Lab activities are not 

meant to be a substitute for sample problems in lectures or homework, but rather a 

supplement. Students find that the analysis practice through calculations in assigned 

problems is critical to gaining a mastery of course concepts. 

 In implementing physical experiments in a structural dynamics course, time 

management during lab instruction is critical. The critical comments received from 

students indicate there were not enough experiment set-up materials or activities to 

engage all group members throughout the lab activity. This could be resolved by building 

additional specimens/set-ups or more deliberate scheduling of lab tasks. 

 In the first time classroom implementation of physical models, construction quality of 

models and clear accompanying instructions are paramount. Student comments about 

construction quality and lab instructions were verbally solicited and noted at the end of 

each new lab activity. By the subsequent offering in S18, modifications had already been 

made to address these issues.   
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