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Cost Minimization and Cost 
Curves

Beattie, Taylor, and Watts
Sections: 3.1a, 3.2a-b, 4.1
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Agenda
 The Cost Function and General Cost 

Minimization
 Cost Minimization with One Variable 

Input
 Deriving the Average Cost and Marginal 

Cost for One Input and One Output
 Cost Minimization with Two Variable 

Inputs
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Cost Function
 A cost function is a function that maps 

a set of inputs into a cost.
 In the short-run, the cost function 

incorporates both fixed and variable 
costs.

 In the long-run, all costs are considered 
variable.
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Cost Function Cont.
 The cost function can be represented as 

the following:
 C = c(x1, x2, …,xn)= w1*x1 + w2*x2 + … + 

wn*xn
 Where wi is the price of input i, xi, for i = 

1, 2, …, n
 Where C is some level of cost and c(•) is a 

function
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Cost Function Cont.
 When there are fixed costs, the cost function 

can be represented as the following:
 C = c(x1, x2| x3, …,xn)= w1*x1 + w2*x2 + TFC
 Where wi is the price of the variable input i, xi, for 

i = 1 and 2
 Where wi is the price of the fixed input i, xi, for i = 

3, 4, …, n
 Where TFC = w3*x3 + … + wn*xn

 When inputs are fixed, they can be lumped into one 
value which we usually denote as TFC

 x3 , … , xn are held to some constant values that do not 
change



Cost Function Cont.
 Suppose we have the following cost 

function:
 C = c(x1, x2, x3)= 5*x1 + 9*x2 + 14*x3
 If x3 was held constant at 4, then the cost 

function can be written as:
 C = c(x1, x2| 4)= 5*x1 + 9*x2 + 56

 Where TFC in this case is 56

6
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Cost Function Cont.
 The cost function is usually meaningless 

unless you have some constraint that bounds 
it, i.e., minimum costs occur when all the 
inputs are equal to zero.



8

Standard Cost Minimization 
Model
 Assume that the general production function 

can be represented as y = f(x1, x2, …, xn).
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Cost Minimization with One 
Variable Input
 Assume that we have one variable input (x) 

which costs w.  Let TFC be the total fixed 
costs.

 Assume that the general production function 
can be represented as y = f(x).
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Lagrangian Solution for One 
Variable Input Model 
 Γ 𝑥𝑥 = 𝑤𝑤𝑤𝑤 + 𝑇𝑇𝑇𝑇𝑇𝑇 + λ 𝑦𝑦 − 𝑓𝑓 𝑥𝑥
 FOC =>


𝜕𝜕Γ 𝑥𝑥
𝜕𝜕𝑥𝑥

= 𝑤𝑤 − λ 𝜕𝜕𝑓𝑓 𝑥𝑥
𝜕𝜕𝑥𝑥

= 0


𝜕𝜕Γ 𝑥𝑥
𝜕𝜕λ

= 𝑦𝑦 − 𝑓𝑓 𝑥𝑥 = 0

 λ = 𝑤𝑤
𝜕𝜕𝑓𝑓 𝑥𝑥
𝜕𝜕𝑥𝑥

= MC
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Cost Minimization with One 
Variable Input Cont.
 In the one input, one output world, the 

solution to the minimization problem is 
trivial.
 By selecting a particular output y, you are 

dictating the level of input x.
 The key is to choose the most efficient 

input to obtain the output.
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Example of Cost Minimization
 Suppose that you have the following production 

function:
 y = f(x) = 6x - x2

 You also know that the price of the input is $10 and 
the total fixed cost is 45.
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Example of Cost Minimization 
Cont.
 Since there is only one input and one output, 

the problem can be solved by finding the 
most efficient input level to obtain the output.
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Example of Cost Minimization 
Cont.
 Given the previous, we must decide whether 

to use the positive or negative sign.
 This is where economic intuition comes in.
 The one that makes economic sense is the 

following:

yx −−= 93
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Cost Function and Cost Curves
 There are many tools that can be used 

to understand the cost function:
 Average Variable Cost (AVC)
 Average Fixed Cost (AFC)
 Average Cost (ATC)
 Marginal Cost (MC)
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Average Variable Cost
 Average variable cost is defined as the cost 

function without the fixed costs divided by 
the output function.
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Average Fixed Cost
 Average fixed cost is defined as the cost 

function without the variable costs divided by 
the output function.
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Average Total Cost
 Average total cost is defined as the cost 

function divided by the output function.
 It is also the summation of the average fixed 

cost and average variable cost.
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Marginal Cost
 Marginal cost is defined as the derivative of the cost 

function with respect to the output.
 To obtain MC, you must substitute the production 

function into the cost function and differentiate with 
respect to output.
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Example of Finding Marginal 
Cost
 Using the production function y = f(x) 

= 6x - x2, and a price of 10, find the MC 
by differentiating with respect to y.

 To solve this problem, you need to 
solve the production function for x and 
plug it into the cost function.
 This gives you a cost function that is a 

function of y.
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Example of Finding Marginal 
Cost Cont.
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Notes on Costs
 MC will meet AVC and ATC from below 

at the corresponding minimum point of 
each.
 Why?

 As output increases AFC goes to zero.
 As output increases, AVC and ATC get 

closer to each other.
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Production and Cost 
Relationships Summary
 Cost curves are derived from the 

physical production process.
 The two major relationships between 

the cost curves and the production 
curves:
 AVC = w/APP
 MC = w/MPP
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Product Curve Relationships 
Cont.
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Product Curve Relationships 
Cont.
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Product Curve Relationships
 When MPP>APP, APP is increasing.

 => MC<AVC, then AVC is decreasing.
 When MPP=APP, APP is at a maximum.

 => MC=AVC, then AVC is at a minimum.
 When MPP<APP, APP is decreasing.

 => MC>AVC, then AVC is increasing.
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Example of Examining the Relationship 
Between MC and AVC

 Given that the production function y = f(x) = 
6x - x2, and a price of 10, find the input(s) 
where AVC is greater than, equal to, and less 
than MC.

 To solve this, examine the following 
situations:
 AVC = MC
 AVC > MC
 AVC < MC



28

Example of Examining the Relationship 
Between MC and AVC Cont.

0
02

266
26

10
6
10

26
10

6
10

6
10

)( 2

=⇒
=⇒

−=−⇒
−

=
−

⇒

=
−

==

−
=

−
==

x
x

xx
xx

MCAVC
xMPP

wMC

xxx
x

xf
wxAVC



29

Example of Examining the Relationship 
Between MC and AVC Cont.
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Example of Examining the Relationship 
Between MC and AVC Cont.
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Review of the Iso-Cost Line
 The iso-cost line is a graphical 

representation of the cost function with 
two inputs where the total cost C is 
held to some fixed level.
 C = c(x1,x2)=w1x1 + w2x2
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Finding the Slope of the Iso-
Cost Line
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Example of Iso-Cost Line
 Suppose you had $1000 to spend on 

the production of lettuce.
 To produce lettuce, you need two 

inputs labor and machinery.
 Labor costs you $10 per unit, while 

machinery costs $100 per unit.
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Example of Iso-Cost Line 
Cont.
 Given the information above we have 

the following cost function:
 C = c(labor, machinery) = $10*labor + 

$100*machinery
 1000 = 10*x1 + 100*x2

 Where C = 1000, x1 = labor, x2 = machinery
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Example of Iso-Cost Line 
Graphically
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Finding the Slope of the Iso-
Cost Line
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Notes on Iso-Cost Line
 As you increase C, you shift the iso-cost 

line parallel out.
 As you change one of the costs of an 

input, the iso-cost line rotates.
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Cost Minimization with Two 
Variable Inputs
 Assume that we have two variable inputs (x1

and x2) which cost respectively w1 and w2.  
We have a total fixed cost of TFC.

 Assume that the general production function 
can be represented as y = f(x1,x2).
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First Order Conditions for the  Cost Minimization 
Problem with Two Inputs
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Implication of MRTS = Slope 
of Iso-Cost Line
 Slope of iso-cost line = -w1/w2, where w2 is 

the cost of input 2 and w1 is cost of input 1.
 MRTS = -MPPx1/MPPx2
 This implies MPPx1/MPPx2 = w1/w2
 Which implies MPPx1 /w1 = MPPx2/w2
 This means that the MPP of input 1 per dollar 

spent on input 1 should equal MPP of input 2 
per dollar spent on input 2.
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Example 1 of Cost Minimization with 
Two Variable Inputs

 Suppose you have the following 
production function: 
 y = f(x1,x2) = 10x1

½ x2
½

 Suppose the price of input 1 is $1 and 
the price of input 2 is $4. Also suppose 
that TFC = 100.

 What is the optimal amount of input 1 
and 2 if you want to produce 20 units.
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Example 1 of Cost Minimization with 
Two Variable Inputs Cont.
 Summary of what is known:

 w1 = 1, w2 = 4, TFC = 100
 y = 10x1

½ x2
½

 y = 20
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Example 1 of Cost Minimization with 
Two Variable Inputs Cont.
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Solving Example 1 Using Ratio of MPP’s Equals 
Absolute Value of the Slope of the Cost Function
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Solving Example 1 Using MRTS from the Isoquant and 
Setting it Equal to the Slope of the Cost Function
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Final Note on Input Selection
 You want to have the iso-cost line 

tangent to the isoquant.
 This implies that you will set the absolute 

value of MRTS equal to the absolute value 
of the slope of the iso-cost line.
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