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iAgenda

= The Cost Function and General Cost
Minimization

s Cost Minimization with One Variable
Input

= Deriving the Average Cost and Marginal
Cost for One Input and One Output

s Cost Minimization with Two Variable
Inputs



i Cost Function

= A cost function is a function that maps
a set of inputs into a cost.

= In the short-run, the cost function
incorporates both fixed and variable
Costs.

= In the long-run, all costs are considered
variable.




iCost Function Cont.

= The cost function can be represented as

the following:

s C =Xy, X9, oo0X)= WiXq + WokX, + .00 +
Wn*Xn

= Where w; is the price of input i, x;, for i =
1,2, ..., n

= Where C is some level of cost and c(e) is a
function



Cost Function Cont.

= When there are fixed costs, the cost function

can be represented as the following:

s C=c(Xy, X5 X3, oy Xy)= WXy + WX, + TFC

= Where w; is the price of the variable input i, x;, for
il=1and?2

= Where w; is the price of the fixed input i, x;, for i =
3,4, ..,n

= Where TFC = w3*X5 + ... + W *X,

= When inputs are fixed, they can be lumped into one
value which we usually denote as TFC

= X3, ... , X, a@re held to some constant values that do not
change
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iCost Function Cont.

= Suppose we have the following cost
function:
n C = c(Xy, X5, X3)= 5*X; + 9%, + 14%x,
» If X3 was held constant at 4, then the cost
function can be written as:
s C = c(Xq, X;| 4)= 5*X; + 9*x, + 56
« Where TFC in this case is 56



iCost Function Cont.

= The cost function is usually meaningless
unless you have some constraint that bounds

it, i.e., minimum costs occur when all the
inputs are equal to zero.



Standard Cost Minimization

iModeI

= Assume that the general production function
can be represented as y = f(Xy, X5, ..., X,)-

Min  wx, +w,x, +...+ W X

n-"n
W.F.L.X] 3 X5 500X,

subjectto:y = f(x,,X,,..., X, )



Cost Minimization with One
iVariabIe Input

= Assume that we have one variable input (x)
which costs w. Let TFC be the total fixed
costs.

= Assume that the general production function
can be represented as y = f(x).

Minwx+TFC

w.r.t.Xx

subject to: y = f(x)




Lagrangian Solution for One
iVariabIe Input Model

s ['(x) =wx+TFC +7\(y —f(x))

s FOC =>

or(x) _ =~ 5 0f(x) _
Ix w—A Ix 0

or(x) B _

w

" A= g = MC

ox
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Cost Minimization with One
iVariabIe Input Cont.

= In the one input, one output world, the
solution to the minimization problem is
trivial.

= By selecting a particular output y, you are
dictating the level of input x.

= The key is to choose the most efficient
input to obtain the output.
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iExampIe of Cost Minimization

= Suppose that you have the following production
function:
= Y = f(X) = 6x - %2
= You also know that the price of the input is $10 and
the total fixed cost is 45.

Min10x+45

w.r.t.x

subject to: y = f(x) = 6x—x"
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Example of Cost Minimization

iCont.

= Since there is only one input and one output,
the problem can be solved by finding the

most efficient input level to obtain the output.
y=6x—x"

=x"—6x+y=0

_—(-6)£+/(=6) ~4())(»)
2

_6+436-4y

m— 4

m— 4

x=3%+,9-y 3



Example of Cost Minimization

iCont.

= Given the previous, we must decide whether
to use the positive or negative sign.
= This is where economic intuition comes in.

= The one that makes economic sense is the
following:

x:3—J9—y
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iCost Function and Cost Curves

= There are many tools that can be used
to understand the cost function:

= Average Variable Cost (AVC)
= Average Fixed Cost (AFC)

= Average Cost (ATC)

» Marginal Cost (MC)
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iAverage Variable Cost

= Average variable cost is defined as the cost

function without the fixed costs divided by
the output function.

avc=">

Y
wx

f(x)

qve ="
APP

AVC =
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iAverage Fixed Cost

= Average fixed cost is defined as the cost
function without the variable costs divided by
the output function.

arc =€
Y
AFC - TFC

J(x)
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iAverage Total Cost

= Average total cost is defined as the cost
function divided by the output function.

= It is also the summation of the average fixed
cost and average variable cost.

wx +TFC

y
wx 1TFC
_I_

y y
wx TFC

TC = +
f(x) f(x)

ATC =

ATC =
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i Marginal Cost

= Marginal cost is defined as the derivative of the cost
function with respect to the output.

= To obtain MC, you must substitute the production
function into the cost function and differentiate with
respect to output.

_dTC(y) dTVvC(y)
dy oy
TC(y)=w* " (»)+TFC
TVC(y)=w* f(y)
f'(y)isinverse of y = f(x)

MC

w

MC=—"
MPP
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Example of Finding Marginal

i Cost

= Using the production function y = f(x)
= 6X - X4, and a price of 10, find the MC
by differentiating with respect to vy.

= [0 solve this problem, you need to
solve the production function for x and
plug it into the cost function.

= This gives you a cost function that is a
function of .
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Example of Finding Marginal

iCost Cont.

Plugging this into the cost function gives:

C=c(y)=103-49-y)
= C=c(y)=30-10,9—y
dc 1

1* _v) 2(_
MC—d—yz()—{E 10(9—-y) *( l)j

1
MC=£: l*10(9—y) 2
dy |2

MC:dc: 5 j

dy 99—y



i Notes on Costs

= MC will meet AVC and ATC from below
at the corresponding minimum point of
each.

= As output increases AFC goes to zero.

= As output increases, AVC and ATC get
closer to each other.
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Production and Cost
iReIationships Summary

s Cost curves are derived from the
physical production process.

= The two major relationships between
the cost curves and the production
curves:
« AVC = w/APP
« MC = w/MPP
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Product Curve Relationships

iCont.

wx

AVC =
J(x)
dAVC _ wf (x) —wxf'(x) ;O
dx WACS) .

= wf (x)— wxf'(x)%O
= f(0) =" (x)=0
= [()=/"(x)



Product Curve Relationships

iCont.

= f()="(x)

RGO L
X <

—> APP=MPP

1 > 1
— —
MPP < APP
w - w
— —
MPP < APP

—> MC=AVC
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iProduct Curve Relationships

= When MPP>APP, APP is increasing.
= => MC<AVC, then AVC is decreasing.

= When MPP=APP, APP is at a maximum.
=« => MC=AVC, then AVC is at a minimum.

= When MPP<APP, APP is decreasing.
= => MC>AVC, then AVC is increasing.
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Between MC and AVC

i Example of Examining the Relationship

= Given that the production function y = f(x) =
6x - x2, and a price of 10, find the input(s)
where AVC is greater than, equal to, and less
than MC.

= To solve this, examine the following
situations:
= AVC = MC
= AVC > MC
= AVC < MC
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Example of Examining the Relationship
Between MC and AVC Cont.

+

WX 10x 10

f(x) N 6x—x> 6-—x

MO — W 10
MPP 6-2x
AVC =MC
10 10

T 6—x 6-2x
= 6—x=6—-2x
= 2x=0
= x=0
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Example of Examining the Relationship
Between MC and AVC Cont.

+

WX 10x 10

f(x) N 6x—x> 6-—x

MC — W 10
MPP 6-2x
AVC > MC
10 10

= 6—x g 6—2x
= 6—2x>6—Xx
= —2X>—X
=0>x
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Example of Examining the Relationship
Between MC and AVC Cont.

+

WX 10x 10

C= - 2
f(x) 6x—x" 6—x

MO — W 10
MPP 6-2x
AVC < MC
10 10

= <
6—x 6-—2x

=>6-x>6-2x

=x>0
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i Review of the Iso-Cost Line

= The iso-cost line is a graphical
representation of the cost function with
two inputs where the total cost C is
held to some fixed level.

n C = c(Xq,X%)=W;X; + W5X,
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Finding the Slope of the Iso-

iCost Line

C=wx, +w,x,
=>w,x, =C—-wxXx,
wx, C  wx

— =
w, w, W,

C wyx,
— Xy = —

w, w,
dx, w

dx, w,
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i Example of Iso-Cost Line

= Suppose you had $1000 to spend on
the production of lettuce.

= [0 produce lettuce, you need two
inputs labor and machinery.

= Labor costs you $10 per unit, while
machinery costs $100 per unit.
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Example of Iso-Cost Line

iCont.

s Given the information above we have
the following cost function:

= C = c(labor, machinery) = $10*labor +
$100*machinery
= 1000 = 10*x; + 100*x,
= Where C = 1000, x, = labor, x, = machinery
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Example of Iso-Cost Line
i Graphically

X3

'/

X, = 10 — (1/10)*x,

100 *1

35



Finding the Slope of the Iso-

iCost Line

1000 =10x, +100x,
— 100x, =1000—10x,

100x, 1000 10x,
p— — —

100 100 100

:>x2:10—1x—(1)

dx, 1

dx, 10
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iNotes on Iso-Cost Line

= As you increase C, you shift the iso-cost
line parallel out.

= As you change one of the costs of an
input, the iso-cost line rotates.
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Cost Minimization with Two
iVariabIe Inputs

= Assume that we have two variable inputs (X,
and X,) which cost respectively w; and w..
We have a total fixed cost of TFC.

= Assume that the general production function
can be represented as y = f(xy,X%,).

Min wx, +w,x, +TFC

w.r.t.xy,x,

subjectto:y = f(x,,x,)
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First Order Conditions for the Cost Minimization
Problem with Two Inputs

['(x,x,,4)=wx, +w,x, +TFC+/1(y—f(x1,x2))

O,
Ox, Ox,

= w, —AMPP, =0

o,
ox, ox,

= w, —AMPP, =0
or

a:y_f(xlaxz):()
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Implication of MRTS = Slope
iof Iso-Cost Line

Slope of iso-cost line = -w,/w,, where w, is
the cost of input 2 and w; is cost of input 1.

MRTS = -MPP,,/MPP,,
This implies MPP, ,/MPP,, = w;/w,
Which implies MPP,; /w; = MPP,,/w,

This means that the MPP of input 1 per dollar
spent on input 1 should equal MPP of input 2
per dollar spent on input 2.
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Example 1 of Cost Minimization with
iTwo Variable Inputs

= Suppose you have the following
production function:

n Y = f(X,%X,) = 10x,72X,7

= Suppose the price of input 1 is $1 and
the price of input 2 is $4. Also suppose
that TFC = 100.

= What is the optimal amount of input 1
and 2 if you want to produce 20 units.
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Example 1 of Cost Minimization with
iTwo Variable Inputs Cont.

= Summary of what is known:
= Wl=1,w2=4 TFC = 100
Y = 10x,72%,"
Yy =20

Min x, +4x,+100

W.r.t.X;,X,

1 1
subject to: y =10x72x;
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Two Variable Inputs Cont.

i Example 1 of Cost Minimization with

1 1
['(xl,x2,A)=1x, +4x, +100 + /l(y — 10x12x22]

1 1
a :1—/110(1ij ’x; =0
2

Ox,

1 1
o _ 4 — /IIO(ljxlzxz =0
2

Ox,

1 1
2—1/;:)/—10x12x22 =0

Solution done in class
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Absolute Value of the Slope of the Cost Function

| Solving Example 1 Using Ratio of MPP’s Equals

3.Plug into production function

l. |MRTS|=——-= [
MPE, x|y =10(4x,)*(x,)’

w 1 1
2.Set |MRTS|=—- =, Pr= 20X,2X.,>
w,
y 4y
1 X, =—and x, =——
X2 2720 1720
x, 4 _
=X, =1
= 4x, =X,

=X, =4
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Setting it Equal to the Slope of the Cost Function

| Solving Example 1 Using MRTS from the Isoquant and

2
Yy o1
1. Find Isoquant —~ 100 X = 1
2 2
4
x2: y :y xl—l :>x1:_y:Z
100x, 100 20 5
2.Find MRTS 4. Solve for x,using x,
-1
Ox, yi oo y’ ()/j y
e R — X~ = —_ <
MRS = T 100 | T 100l5) T 20
=X, =1
3.Set MRTS = - =1 2
w, 4| =>x, =4
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iFinaI Note on Input Selection

= You want to have the iso-cost line
tangent to the isoquant.

= This implies that you will set the absolute
value of MRTS equal to the absolute value
of the slope of the iso-cost line.
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